Co-Transport of Cr(VI)/Ni(II) in Solution in Alkaline Soil and their Simultaneous Immobilization

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Zhiqiao Shi, Jiawen Ding, Tingyu Ni, Zhuhong Ding
{"title":"Co-Transport of Cr(VI)/Ni(II) in Solution in Alkaline Soil and their Simultaneous Immobilization","authors":"Zhiqiao Shi,&nbsp;Jiawen Ding,&nbsp;Tingyu Ni,&nbsp;Zhuhong Ding","doi":"10.1007/s11270-025-07939-7","DOIUrl":null,"url":null,"abstract":"<div><p>The co-transport of Cr(VI) and Ni(II) in alkaline soil under different soil characteristics and hydrological/hydrochemical variables and immobilization of aqueous and soilborne Cr(VI)/Ni(II) in alkaline soil were investigated. Ni(II) transport was more sensitive to soil particle size and influent pH than Cr(VI). Humic acid (HA) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) reduced the transport of Ni(II) more obviously, compared with Cr(VI). Reduction and adsorption were responsible for the retention of Cr(VI) in treatments with HA and Fe<sub>3</sub>O<sub>4</sub>, while complexation and electrostatic attraction dominated in the retention of Ni(II). The increase of IS to 16 mmol/L increased Cr(VI) penetration with 8.8%, and a low pH favored the removal of Cr(VI) but impaired that of Ni(II). Soil barriers spiked with HA + Fe<sup>0</sup> was efficient in retaining about 93.8% Cr(VI) and 94.3% Ni(II) from influent. The reaction of HA and Fe<sub>3</sub>O<sub>4</sub> with Cr(VI) was much slower than Fe<sup>0</sup> in mixed Cr(VI)/Ni(II) solution. Cr and Ni in co-contaminated soil could be effectively stabilized by 5% Fe<sup>0</sup> and 5% HA + 5% Fe<sup>0</sup> groups, converting them from easy-mobile species to more stable species. The leaching experiments of the soil at the 30th day after the remediation showed that there was little amount of Cr, Ni and Fe was washed by deionized water in HA + Fe<sup>0</sup> treatment. Therefore, soil characteristics and hydrological/hydrochemical variables have significantly different impacts on Cr(VI) and Ni(II) transport in alkaline soil, which should be considered seriously in their risk assessment and the pollution control. Furthermore, HA + Fe<sup>0</sup> is a promising approach in long-term immobilization of Cr(VI)/Ni(II) in their co-polluted soil.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07939-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The co-transport of Cr(VI) and Ni(II) in alkaline soil under different soil characteristics and hydrological/hydrochemical variables and immobilization of aqueous and soilborne Cr(VI)/Ni(II) in alkaline soil were investigated. Ni(II) transport was more sensitive to soil particle size and influent pH than Cr(VI). Humic acid (HA) and magnetite (Fe3O4) reduced the transport of Ni(II) more obviously, compared with Cr(VI). Reduction and adsorption were responsible for the retention of Cr(VI) in treatments with HA and Fe3O4, while complexation and electrostatic attraction dominated in the retention of Ni(II). The increase of IS to 16 mmol/L increased Cr(VI) penetration with 8.8%, and a low pH favored the removal of Cr(VI) but impaired that of Ni(II). Soil barriers spiked with HA + Fe0 was efficient in retaining about 93.8% Cr(VI) and 94.3% Ni(II) from influent. The reaction of HA and Fe3O4 with Cr(VI) was much slower than Fe0 in mixed Cr(VI)/Ni(II) solution. Cr and Ni in co-contaminated soil could be effectively stabilized by 5% Fe0 and 5% HA + 5% Fe0 groups, converting them from easy-mobile species to more stable species. The leaching experiments of the soil at the 30th day after the remediation showed that there was little amount of Cr, Ni and Fe was washed by deionized water in HA + Fe0 treatment. Therefore, soil characteristics and hydrological/hydrochemical variables have significantly different impacts on Cr(VI) and Ni(II) transport in alkaline soil, which should be considered seriously in their risk assessment and the pollution control. Furthermore, HA + Fe0 is a promising approach in long-term immobilization of Cr(VI)/Ni(II) in their co-polluted soil.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信