Yuan Zhu, Khidhair Jasim Mohammed, Mohamed Gamal Elsehrawy, H. Elhosiny Ali, Hakim AL Garalleh
{"title":"Advancing building management with nano-enhanced carbon materials: a machine learning-driven business and economic analysis","authors":"Yuan Zhu, Khidhair Jasim Mohammed, Mohamed Gamal Elsehrawy, H. Elhosiny Ali, Hakim AL Garalleh","doi":"10.1007/s42823-024-00826-x","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon aerogels including graphite and graphene have unique properties such as lightweight, strong, and insulative to roofing applications. Carbon aerogels offer innovative solutions in building management by enhancing thermal and acoustic insulation while reducing structural weight, aligning with the focus on economic and business analysis driven by machine learning. Traditional building materials often fail to meet contemporary energy efficiency and sustainability demands, underscoring the necessity for more advanced solutions. This project is dedicated to integrating carbon aerogels into roofing systems and employs Deep Neural Networks (DNNs) to optimize their performance and integration. The novelty of this study lies in its application of carbon aerogel technology—a cutting-edge, lightweight, and highly insulative material—specifically within roofing to analyze the practical evaluation of carbon aerogels’ thermal properties and economic viability in the construction industry. This study aims to rigorously assess carbon aerogels’ performance and financial impact on roofing applications. By conducting the thermal guard test and economic lifecycle evaluation, the study seeks to validate carbon aerogels’ enhanced energy efficiency and cost-effectiveness compared to traditional roofing materials. The study demonstrates that carbon aerogels offer superior thermal insulation in roofing applications, with a thermal conductivity of 0.02 W/m·K, significantly outperforming traditional materials. Economically, the high initial cost of carbon aerogels is effectively offset by substantial energy savings, estimated at $300 annually per square meter, resulting in a payback period of approximately 1.05 years. These findings are supported by rigorous testing and optimization through DNN, highlighting the material’s potential to enhance energy efficiency and sustainability in building practices.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"781 - 802"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00826-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon aerogels including graphite and graphene have unique properties such as lightweight, strong, and insulative to roofing applications. Carbon aerogels offer innovative solutions in building management by enhancing thermal and acoustic insulation while reducing structural weight, aligning with the focus on economic and business analysis driven by machine learning. Traditional building materials often fail to meet contemporary energy efficiency and sustainability demands, underscoring the necessity for more advanced solutions. This project is dedicated to integrating carbon aerogels into roofing systems and employs Deep Neural Networks (DNNs) to optimize their performance and integration. The novelty of this study lies in its application of carbon aerogel technology—a cutting-edge, lightweight, and highly insulative material—specifically within roofing to analyze the practical evaluation of carbon aerogels’ thermal properties and economic viability in the construction industry. This study aims to rigorously assess carbon aerogels’ performance and financial impact on roofing applications. By conducting the thermal guard test and economic lifecycle evaluation, the study seeks to validate carbon aerogels’ enhanced energy efficiency and cost-effectiveness compared to traditional roofing materials. The study demonstrates that carbon aerogels offer superior thermal insulation in roofing applications, with a thermal conductivity of 0.02 W/m·K, significantly outperforming traditional materials. Economically, the high initial cost of carbon aerogels is effectively offset by substantial energy savings, estimated at $300 annually per square meter, resulting in a payback period of approximately 1.05 years. These findings are supported by rigorous testing and optimization through DNN, highlighting the material’s potential to enhance energy efficiency and sustainability in building practices.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.