Hong Zhang, Teeb Basim Abbas, Yousef Zandi, Alireza Sadighi Agdas, Zahra Sadighi Agdas, Meldi Suhatril, Emad Toghroli, Awad A. Ibraheem, Anas A. Salameh, Hakim AL Garalleh, Hamid Assilzadeh
{"title":"Optimizing business strategies for carbon energy management in buildings: a machine learning approach in economics and management","authors":"Hong Zhang, Teeb Basim Abbas, Yousef Zandi, Alireza Sadighi Agdas, Zahra Sadighi Agdas, Meldi Suhatril, Emad Toghroli, Awad A. Ibraheem, Anas A. Salameh, Hakim AL Garalleh, Hamid Assilzadeh","doi":"10.1007/s42823-024-00801-6","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing business strategies for energy through machine learning involves using predictive analytics for accurate energy demand and price forecasting, enhancing operational efficiency through resource optimization and predictive maintenance, and optimizing renewable energy integration into the energy grid. This approach maximizes production, reduces costs, and ensures stability in energy supply. The novelty of integrating deep reinforcement learning (DRL) in energy management lies in its ability to adapt and optimize operational strategies in real-time, autonomously leveraging advanced machine learning techniques to handle dynamic and complex energy environments. The study’s outcomes demonstrate the effectiveness of DRL in optimizing energy management strategies. Statistical validity tests revealed shallow error values [MAE: 1.056 × 10<sup>(−13)</sup> and RMSE: 1.253 × 10<sup>(−13)</sup>], indicating strong predictive accuracy and model robustness. Sensitivity analysis showed that heating and cooling energy consumption variations significantly impact total energy consumption, with predicted changes ranging from 734.66 to 835.46 units. Monte Carlo simulations revealed a mean total energy consumption of 850 units with a standard deviation of 50 units, underscoring the model’s robustness under various stochastic scenarios. Another significant result of the economic impact analysis was the comparison of different operational strategies. The analysis indicated that scenario 1 (high operational costs) and scenario 2 (lower operational costs) both resulted in profits of $70,000, despite differences in operational costs and revenues. However, scenario 3 (optimized strategy) demonstrated superior financial performance with a profit of $78,500. This highlights the importance of strategic operational improvements and suggests that efficiency optimization can significantly enhance profitability. In addition, the DRL-enhanced strategies showed a marked improvement in forecasting and managing demand fluctuations, leading to better resource allocation and reduced energy wastage. Integrating DRL improves operational efficiency and supports long-term financial viability, positioning energy systems for a more sustainable future.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"607 - 621"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00801-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing business strategies for energy through machine learning involves using predictive analytics for accurate energy demand and price forecasting, enhancing operational efficiency through resource optimization and predictive maintenance, and optimizing renewable energy integration into the energy grid. This approach maximizes production, reduces costs, and ensures stability in energy supply. The novelty of integrating deep reinforcement learning (DRL) in energy management lies in its ability to adapt and optimize operational strategies in real-time, autonomously leveraging advanced machine learning techniques to handle dynamic and complex energy environments. The study’s outcomes demonstrate the effectiveness of DRL in optimizing energy management strategies. Statistical validity tests revealed shallow error values [MAE: 1.056 × 10(−13) and RMSE: 1.253 × 10(−13)], indicating strong predictive accuracy and model robustness. Sensitivity analysis showed that heating and cooling energy consumption variations significantly impact total energy consumption, with predicted changes ranging from 734.66 to 835.46 units. Monte Carlo simulations revealed a mean total energy consumption of 850 units with a standard deviation of 50 units, underscoring the model’s robustness under various stochastic scenarios. Another significant result of the economic impact analysis was the comparison of different operational strategies. The analysis indicated that scenario 1 (high operational costs) and scenario 2 (lower operational costs) both resulted in profits of $70,000, despite differences in operational costs and revenues. However, scenario 3 (optimized strategy) demonstrated superior financial performance with a profit of $78,500. This highlights the importance of strategic operational improvements and suggests that efficiency optimization can significantly enhance profitability. In addition, the DRL-enhanced strategies showed a marked improvement in forecasting and managing demand fluctuations, leading to better resource allocation and reduced energy wastage. Integrating DRL improves operational efficiency and supports long-term financial viability, positioning energy systems for a more sustainable future.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.