{"title":"Agriculture biomass-derived carbon materials for their application in sustainable energy storage","authors":"Phibarisha Sohtun, Deepjyoti Deb, Neelam Bora, Rupam Goswami, Pradyumna Kumar Choudhury, Rajender Boddula, Prakash Kumar Sarangi, Rupam Kataki, Tonni Agustiono Kurniawan","doi":"10.1007/s42823-025-00884-9","DOIUrl":null,"url":null,"abstract":"<div><p>Industrialization and increasing consumerism have driven up energy demand and fossil fuel consumption, significantly contributing to global climate change and environmental pollution. While renewable energy sources are sustainable, their intermittent nature necessitates the development of efficient energy storage devices to ensure uninterrupted power supply and optimal energy utilization. Electrochemical energy storage devices are promising for sustainable energy. Traditionally, carbon electrode materials for these devices come from non-renewable sources. However, using biomass and biomass–coal blends can help substitute fossil fuels, reducing environmental impact. Recent advancements in carbon materials have achieved specific surface areas of over 2500 m<sup>2</sup>/g, resulting in supercapacitor capacitances of 250–350 F/g and cycling stability exceeding 10,000 cycles with < 5% capacity loss. In lithium-ion batteries, biomass-based anodes deliver 400–600 mA h/g, outperforming graphite. Doped carbon materials enhance charge-transfer efficiency by 20–30%, while CO₂ emissions from production are reduced by 40–60%. With 50–70% lower costs than fossil-based alternatives, biomass-derived carbons present a viable pathway for scalable, eco-friendly energy storage solutions, accelerating the transition toward sustainable energy systems. Overall, this work highlights the influence of carbon materials on the electrochemical properties and hydrogen storage capacity of biomass-based carbon materials. This also underscores their potential application in energy storage.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"481 - 513"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00884-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Industrialization and increasing consumerism have driven up energy demand and fossil fuel consumption, significantly contributing to global climate change and environmental pollution. While renewable energy sources are sustainable, their intermittent nature necessitates the development of efficient energy storage devices to ensure uninterrupted power supply and optimal energy utilization. Electrochemical energy storage devices are promising for sustainable energy. Traditionally, carbon electrode materials for these devices come from non-renewable sources. However, using biomass and biomass–coal blends can help substitute fossil fuels, reducing environmental impact. Recent advancements in carbon materials have achieved specific surface areas of over 2500 m2/g, resulting in supercapacitor capacitances of 250–350 F/g and cycling stability exceeding 10,000 cycles with < 5% capacity loss. In lithium-ion batteries, biomass-based anodes deliver 400–600 mA h/g, outperforming graphite. Doped carbon materials enhance charge-transfer efficiency by 20–30%, while CO₂ emissions from production are reduced by 40–60%. With 50–70% lower costs than fossil-based alternatives, biomass-derived carbons present a viable pathway for scalable, eco-friendly energy storage solutions, accelerating the transition toward sustainable energy systems. Overall, this work highlights the influence of carbon materials on the electrochemical properties and hydrogen storage capacity of biomass-based carbon materials. This also underscores their potential application in energy storage.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.