Multifunctional oleic acid functionalized iron oxide nanoparticles for antibacterial and dye degradation applications with magnetic recycling

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shreya Sinha, Rahul Sharma, Mohd Rehan Ansari, Rahul Singh, Saurabh Pathak, Noor Jahan and Koteswara Rao Peta
{"title":"Multifunctional oleic acid functionalized iron oxide nanoparticles for antibacterial and dye degradation applications with magnetic recycling","authors":"Shreya Sinha, Rahul Sharma, Mohd Rehan Ansari, Rahul Singh, Saurabh Pathak, Noor Jahan and Koteswara Rao Peta","doi":"10.1039/D5MA00036J","DOIUrl":null,"url":null,"abstract":"<p >Nanotechnology that synchronously mitigates biomedical and environmental challenges is imperative for sustainable innovation. In this study, we report the synthesis of oleic acid (OA)-modified iron oxide (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>) nanoparticles <em>via</em> co-precipitation, which exhibit potent bactericidal effects and rapid photocatalytic dye degradation. Their intrinsic magnetic properties enable efficient recovery and repeated reuse, offering a robust platform for integrated remediation strategies. Comprehensive characterization confirmed that the synthesized OA-functionalized Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles (NPs) possess a single-phase cubic structure (12.17 nm crystallite size), an intact OA coating with particle size 13.01 nm, direct/indirect band gaps of 3.58/2.54 eV, and superparamagnetic behaviour exhibiting 40 emu g<small><sup>−1</sup></small> saturation, confirming advanced functionality. The OA-coated Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> NPs exhibited a high zone of inhibition (ZOI) of 9.28 mm against <em>Escherichia coli</em> DH5α bacteria at a low concentration of 50 μg μL<small><sup>−1</sup></small>, surpassing similar ferrite-based systems. The strong antibacterial activity is attributed to the generation of reactive oxygen species (ROS) and the controlled release of Fe<small><sup>2+</sup></small>/Fe<small><sup>3+</sup></small> ions, which disrupt the bacterial cell membrane, denature proteins, and damage DNA. The superparamagnetic nature of the NPs ensures minimal coercivity and remanence, facilitating precise targeting and magnetic separation in biomedical applications. Moreover, the OA-coated Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> NPs achieved 99.17% degradation of Rhodamine B (RhB) dye under visible light irradiation in 340 minutes. This performance is rooted in the synergistic effects of OA, which enhances light absorption and electron–hole pair separation, and Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>, which drives redox reactions through its conduction band electrons and valence band holes. The photocatalytic degradation follows first-order kinetics, with a rate constant of 0.0079 min<small><sup>−1</sup></small>. Importantly, the magnetic properties of the NPs allowed efficient recovery and reuse for four consecutive cycles, demonstrating long-term stability and economic viability. This study underscores the interplay between surface functionalization, magnetic behaviour, antimicrobial and catalytic properties, establishing OA-coated Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> NPs as a potent, cost-effective solution for dual-action biomedical and environmental applications.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 7","pages":" 2253-2268"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00036j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00036j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanotechnology that synchronously mitigates biomedical and environmental challenges is imperative for sustainable innovation. In this study, we report the synthesis of oleic acid (OA)-modified iron oxide (Fe3O4) nanoparticles via co-precipitation, which exhibit potent bactericidal effects and rapid photocatalytic dye degradation. Their intrinsic magnetic properties enable efficient recovery and repeated reuse, offering a robust platform for integrated remediation strategies. Comprehensive characterization confirmed that the synthesized OA-functionalized Fe3O4 nanoparticles (NPs) possess a single-phase cubic structure (12.17 nm crystallite size), an intact OA coating with particle size 13.01 nm, direct/indirect band gaps of 3.58/2.54 eV, and superparamagnetic behaviour exhibiting 40 emu g−1 saturation, confirming advanced functionality. The OA-coated Fe3O4 NPs exhibited a high zone of inhibition (ZOI) of 9.28 mm against Escherichia coli DH5α bacteria at a low concentration of 50 μg μL−1, surpassing similar ferrite-based systems. The strong antibacterial activity is attributed to the generation of reactive oxygen species (ROS) and the controlled release of Fe2+/Fe3+ ions, which disrupt the bacterial cell membrane, denature proteins, and damage DNA. The superparamagnetic nature of the NPs ensures minimal coercivity and remanence, facilitating precise targeting and magnetic separation in biomedical applications. Moreover, the OA-coated Fe3O4 NPs achieved 99.17% degradation of Rhodamine B (RhB) dye under visible light irradiation in 340 minutes. This performance is rooted in the synergistic effects of OA, which enhances light absorption and electron–hole pair separation, and Fe3O4, which drives redox reactions through its conduction band electrons and valence band holes. The photocatalytic degradation follows first-order kinetics, with a rate constant of 0.0079 min−1. Importantly, the magnetic properties of the NPs allowed efficient recovery and reuse for four consecutive cycles, demonstrating long-term stability and economic viability. This study underscores the interplay between surface functionalization, magnetic behaviour, antimicrobial and catalytic properties, establishing OA-coated Fe3O4 NPs as a potent, cost-effective solution for dual-action biomedical and environmental applications.

Abstract Image

多功能油酸功能化氧化铁纳米颗粒在磁性回收中的抗菌和染料降解应用
同时缓解生物医学和环境挑战的纳米技术是可持续创新的必要条件。在这项研究中,我们报道了通过共沉淀法合成油酸(OA)修饰的氧化铁(Fe3O4)纳米颗粒,该纳米颗粒具有强大的杀菌作用和快速的光催化染料降解。它们固有的磁性能使其高效回收和重复利用,为综合修复策略提供了强大的平台。综合表征证实,合成的OA功能化Fe3O4纳米颗粒(NPs)具有单相立方结构(晶粒尺寸为12.17 nm),完整的OA涂层(粒径为13.01 nm),直接/间接带隙为3.58/2.54 eV,超顺磁性行为达到40 emu g−1饱和,证实了先进的功能。在50 μg μL−1的低浓度下,oa包被的Fe3O4 NPs对大肠杆菌DH5α细菌具有9.28 mm的高抑制区(ZOI),优于类似的铁氧体基体系。其强大的抗菌活性是由于活性氧(ROS)的产生和Fe2+/Fe3+离子的控制释放,这些离子破坏细菌细胞膜,使蛋白质变性,并损伤DNA。NPs的超顺磁性确保了最小的矫顽力和剩余物,促进了生物医学应用中的精确靶向和磁分离。此外,在可见光照射340分钟后,经oa包覆的Fe3O4 NPs对罗丹明B (RhB)染料的降解率达到99.17%。这种性能源于OA和Fe3O4的协同效应,OA增强了光吸收和电子空穴对分离,Fe3O4通过其导带电子和价带空穴驱动氧化还原反应。光催化降解遵循一级动力学,速率常数为0.0079 min−1。重要的是,NPs的磁性能允许高效回收和重复使用四个连续循环,显示出长期稳定性和经济可行性。这项研究强调了表面功能化、磁性行为、抗菌和催化性能之间的相互作用,建立了oa涂层Fe3O4 NPs作为双重作用生物医学和环境应用的有效、经济的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信