Hierarchical bimetallic nanoparticles embedded nitrogen-doped carbon derived from ZIF-67 composites for efficient electrochemical nitrite sensing

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jingwen Zhao, Xiaotian Guo, Wenzhuo Sun, Jing Wang, Jizhou Jiang, Huan Pang
{"title":"Hierarchical bimetallic nanoparticles embedded nitrogen-doped carbon derived from ZIF-67 composites for efficient electrochemical nitrite sensing","authors":"Jingwen Zhao,&nbsp;Xiaotian Guo,&nbsp;Wenzhuo Sun,&nbsp;Jing Wang,&nbsp;Jizhou Jiang,&nbsp;Huan Pang","doi":"10.1007/s42823-024-00807-0","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrite is commonly found in various aspects of daily life, but its excessive intake poses health risks like blood oxygen transport impairment and cancer risks. Accurate detection of nitrite is crucial for preventing its potential harm and ensuring public health. In this work, Cu–Co bimetallic nanoparticles (NPs) incorporated nitrogen-doped carbon dodecahedron (Cu/Co@N–C/CNTs-X, where X denotes the carbonization temperatures) are synthesized by facile carbonization of CuO@ZIF-67 composites. Cu and Co NPs are uniformly embedded in the carbon dodecahedron decorated by carbon nanotubes (CNTs) without agglomeration. Combining the superior catalytic from Cu and Co NPs with the electrical conductivity and stability from the carbon frameworks, the Cu/Co@N–C/CNTs-600 composite as catalyst detected nitrite concentrations ranging from 1 to 5000 μM, with sensitivity values of 0.708 μA μM<sup>–1</sup> cm<sup>–2</sup>, and a detection limit of 0.5 μM. Moreover, this sensor demonstrated notable selectivity, stability and reproducibility. The design of Cu/Co@N–C/CNTs-X catalysts prepared in this study can be used as an attractive alternative in the fields of food quality and environmental detection.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"635 - 643"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00807-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrite is commonly found in various aspects of daily life, but its excessive intake poses health risks like blood oxygen transport impairment and cancer risks. Accurate detection of nitrite is crucial for preventing its potential harm and ensuring public health. In this work, Cu–Co bimetallic nanoparticles (NPs) incorporated nitrogen-doped carbon dodecahedron (Cu/Co@N–C/CNTs-X, where X denotes the carbonization temperatures) are synthesized by facile carbonization of CuO@ZIF-67 composites. Cu and Co NPs are uniformly embedded in the carbon dodecahedron decorated by carbon nanotubes (CNTs) without agglomeration. Combining the superior catalytic from Cu and Co NPs with the electrical conductivity and stability from the carbon frameworks, the Cu/Co@N–C/CNTs-600 composite as catalyst detected nitrite concentrations ranging from 1 to 5000 μM, with sensitivity values of 0.708 μA μM–1 cm–2, and a detection limit of 0.5 μM. Moreover, this sensor demonstrated notable selectivity, stability and reproducibility. The design of Cu/Co@N–C/CNTs-X catalysts prepared in this study can be used as an attractive alternative in the fields of food quality and environmental detection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信