Hydrothermal synthesis and structural design of zero- to three-dimensional biomass-derived carbon nanomaterials

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Guo Cheng, Hui-jia Li, Jing-hua Fang, Xue-qing Wang, Jia-qi Li, Jun-feng Chang, Na Teng, Ji-tong Wang
{"title":"Hydrothermal synthesis and structural design of zero- to three-dimensional biomass-derived carbon nanomaterials","authors":"Guo Cheng,&nbsp;Hui-jia Li,&nbsp;Jing-hua Fang,&nbsp;Xue-qing Wang,&nbsp;Jia-qi Li,&nbsp;Jun-feng Chang,&nbsp;Na Teng,&nbsp;Ji-tong Wang","doi":"10.1007/s42823-025-00872-z","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of functional carbon materials with controllable morphology and structure using a simple, effective, and green process starting from biomass has been an attractive and challenging topic in recent years. After decades of technological development, high value-added biomass-derived carbon nanomaterials with different morphologies and structures prepared by low-temperature hydrothermal carbonization (HTC) have been gradually developed into a huge system covering different series in different dimensions, and are widely used in the fields of adsorption, electrochemical energy storage, and catalysis. However, due to a vague understanding of the fundamental structure–performance correlation and the absence of customized material design strategies, the diverse needs in practical applications cannot be well met. Herein, we reviewed the mechanism, modifications, and applications of the low-temperature HTC method for biomass. The synthesis mechanisms, structural designs strategies, and related applications of biomass-derived hydrochar are highlighted and summarized in different dimensions, including six major categories: zero-dimensional spherical structure, one-dimensional fibrous and tubular structure, two-dimensional lamellar structure, three-dimensional hierarchical porous structure, and special-shaped asymmetric structure. Then a sustainability assessment is conducted on the hydrothermal carbonization process. Finally, the controllable preparation of biomass-derived hydrochar is summarized and prospected for the application requirements in different fields.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"441 - 467"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00872-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of functional carbon materials with controllable morphology and structure using a simple, effective, and green process starting from biomass has been an attractive and challenging topic in recent years. After decades of technological development, high value-added biomass-derived carbon nanomaterials with different morphologies and structures prepared by low-temperature hydrothermal carbonization (HTC) have been gradually developed into a huge system covering different series in different dimensions, and are widely used in the fields of adsorption, electrochemical energy storage, and catalysis. However, due to a vague understanding of the fundamental structure–performance correlation and the absence of customized material design strategies, the diverse needs in practical applications cannot be well met. Herein, we reviewed the mechanism, modifications, and applications of the low-temperature HTC method for biomass. The synthesis mechanisms, structural designs strategies, and related applications of biomass-derived hydrochar are highlighted and summarized in different dimensions, including six major categories: zero-dimensional spherical structure, one-dimensional fibrous and tubular structure, two-dimensional lamellar structure, three-dimensional hierarchical porous structure, and special-shaped asymmetric structure. Then a sustainability assessment is conducted on the hydrothermal carbonization process. Finally, the controllable preparation of biomass-derived hydrochar is summarized and prospected for the application requirements in different fields.

零至三维生物质衍生碳纳米材料的水热合成与结构设计
以生物质为原料,采用简单、有效、绿色的工艺合成形态和结构可控的功能碳材料是近年来备受关注和具有挑战性的课题。经过几十年的技术发展,低温水热炭化(HTC)制备的具有不同形态和结构的高附加值生物质源碳纳米材料已逐渐发展成为涵盖不同系列、不同维度的庞大体系,广泛应用于吸附、电化学储能、催化等领域。然而,由于对基本结构-性能相关性的认识模糊,缺乏定制化的材料设计策略,无法很好地满足实际应用中的多样化需求。本文综述了低温HTC法制备生物质的机理、改性及应用。从不同的维度对生物质衍生烃类的合成机理、结构设计策略和相关应用进行了重点综述,包括6大类:零维球形结构、一维纤维管状结构、二维片层结构、三维分层多孔结构和异形不对称结构。然后对水热炭化过程进行了可持续性评价。最后,对生物质衍生烃类的可控制备进行了总结,并对其在不同领域的应用需求进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信