{"title":"Effect of carbon conductor dispersion and composition in dry cathode electrode on LiB performances","authors":"Chae Yeon Lim, Gyori Park, Kyung Jin Lee","doi":"10.1007/s42823-024-00812-3","DOIUrl":null,"url":null,"abstract":"<div><p>As increasing markets for Lithium‒ion battery (LiB), several environmental issues have attained great attention. Especially, the organic solvent N‒Methyl‒2‒Pyrrolidone (NMP), commonly used in the traditional slurry casting process for fabricating LiB electrodes, will be about to be regulated due to its toxicity and the environmental concerns. Therefore, the production of LiB electrodes by a dry process without using NMP organic solvents is of special interest nowadays. In the dry process, it is generally accepted that 1‒dimensional carbon materials like carbon nanotubes (CNT) are beneficial than conventional carbon conductor such as carbon blacks (CB). However, CB is inevitably included during the CNT production, simultaneously as an impurity. Refining CNT from CNT/CB mixture can cause another cost obviously. On the other hand, there have been limited information to study dispersion of carbon materials in electrode with respect to dispersion method and types of carbon conductor. Here, we systematically test the effect of dispersibility of carbon conductor in electrode according to dispersion method and type of carbon conductors. In addition, effect of CB amount in carbon conductor are also elucidated on manufacturing procedure, properties of electrode and their electrochemical performances.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"675 - 685"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00812-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As increasing markets for Lithium‒ion battery (LiB), several environmental issues have attained great attention. Especially, the organic solvent N‒Methyl‒2‒Pyrrolidone (NMP), commonly used in the traditional slurry casting process for fabricating LiB electrodes, will be about to be regulated due to its toxicity and the environmental concerns. Therefore, the production of LiB electrodes by a dry process without using NMP organic solvents is of special interest nowadays. In the dry process, it is generally accepted that 1‒dimensional carbon materials like carbon nanotubes (CNT) are beneficial than conventional carbon conductor such as carbon blacks (CB). However, CB is inevitably included during the CNT production, simultaneously as an impurity. Refining CNT from CNT/CB mixture can cause another cost obviously. On the other hand, there have been limited information to study dispersion of carbon materials in electrode with respect to dispersion method and types of carbon conductor. Here, we systematically test the effect of dispersibility of carbon conductor in electrode according to dispersion method and type of carbon conductors. In addition, effect of CB amount in carbon conductor are also elucidated on manufacturing procedure, properties of electrode and their electrochemical performances.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.