A NiCo oxide/NiCo sulfate hollow nanowire-coated separator: a versatile strategy for polysulfide trapping and catalytic conversion in high-performance lithium-sulfur batteries†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-04-01 DOI:10.1039/D5RA00172B
Jiarui Liu, Xinhai Wang, Tinghong Gao, Wensheng Yang, Qinyan Jian, Bingxian Li, Lishan He and Yunjun Ruan
{"title":"A NiCo oxide/NiCo sulfate hollow nanowire-coated separator: a versatile strategy for polysulfide trapping and catalytic conversion in high-performance lithium-sulfur batteries†","authors":"Jiarui Liu, Xinhai Wang, Tinghong Gao, Wensheng Yang, Qinyan Jian, Bingxian Li, Lishan He and Yunjun Ruan","doi":"10.1039/D5RA00172B","DOIUrl":null,"url":null,"abstract":"<p >Lithium-sulfur batteries (LSBs) are highly anticipated due to their remarkable theoretical specific energy and energy density. Nevertheless, the polysulfide shuttle effect severely curtails their cycle life, posing a significant obstacle to commercialization. Herein, we introduce nickel-cobalt oxide/nickel-cobalt sulfate hollow nanowires (NCO/NCSO-HNWs) as a separator modification material. The ingeniously designed hollow nanostructure of NCO/NCSO-HNWs endows it with a profusion of adsorption and catalytic active sites. This unique feature enables it to not only physically adsorb lithium polysulfides (LiPSs) but also catalytically convert them, thereby remarkably enhancing the anchoring and conversion efficiency of LiPSs. The LSBs equipped with NCO/NCSO-HNWs-modified separators exhibit an outstanding initial capacity of 1260 mA h g<small><sup>−1</sup></small> at 0.2C. Even after 100 cycles, a high capacity of 956 mA h g<small><sup>−1</sup></small> is retained, corresponding to an impressive retention rate of 75.9%. Notably, at 1C, after enduring 500 cycles, the discharge capacity still stabilizes at 695 mA h g<small><sup>−1</sup></small>. The utilization of such hollow nanowire-based separator modification materials represents a novel and effective strategy for elevating the performance of LSBs, holding substantial promise for surmounting the challenges associated with the shuttle effect and expediting the commercialization journey of LSBs.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 13","pages":" 9875-9883"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00172b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00172b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-sulfur batteries (LSBs) are highly anticipated due to their remarkable theoretical specific energy and energy density. Nevertheless, the polysulfide shuttle effect severely curtails their cycle life, posing a significant obstacle to commercialization. Herein, we introduce nickel-cobalt oxide/nickel-cobalt sulfate hollow nanowires (NCO/NCSO-HNWs) as a separator modification material. The ingeniously designed hollow nanostructure of NCO/NCSO-HNWs endows it with a profusion of adsorption and catalytic active sites. This unique feature enables it to not only physically adsorb lithium polysulfides (LiPSs) but also catalytically convert them, thereby remarkably enhancing the anchoring and conversion efficiency of LiPSs. The LSBs equipped with NCO/NCSO-HNWs-modified separators exhibit an outstanding initial capacity of 1260 mA h g−1 at 0.2C. Even after 100 cycles, a high capacity of 956 mA h g−1 is retained, corresponding to an impressive retention rate of 75.9%. Notably, at 1C, after enduring 500 cycles, the discharge capacity still stabilizes at 695 mA h g−1. The utilization of such hollow nanowire-based separator modification materials represents a novel and effective strategy for elevating the performance of LSBs, holding substantial promise for surmounting the challenges associated with the shuttle effect and expediting the commercialization journey of LSBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信