Acrolein production from glycerol dehydration over amorphous V–P–N–C catalysts†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-04-01 DOI:10.1039/D4RA08613A
Jun Liu, Xiaobing Zhao, Weichen Wang, Youjun Yan, Guofu Huang, Meng Liang, Xinzhen Feng and Weijie Ji
{"title":"Acrolein production from glycerol dehydration over amorphous V–P–N–C catalysts†","authors":"Jun Liu, Xiaobing Zhao, Weichen Wang, Youjun Yan, Guofu Huang, Meng Liang, Xinzhen Feng and Weijie Ji","doi":"10.1039/D4RA08613A","DOIUrl":null,"url":null,"abstract":"<p >Amorphous catalysts exhibit a plethora of oxygen vacancies, electron-rich active sites, and highly dispersed active centers, thereby yielding exceptional catalytic performance for multiple reactions. In this work, a series of amorphous V–P–N–C catalysts were synthesized using complexants and employed for catalyzing the glycerol dehydration reaction towards acrolein. Under optimized reaction conditions, the glycerol conversion reached 99.1% with an acrolein selectivity of 83.2% over the amorphous catalyst VPOC<small><sub>6</sub></small>. The comprehensive characterization results of Raman, XPS, H<small><sub>2</sub></small>-TPR, SEM, BET, and NH<small><sub>3</sub></small>-TPD, demonstrated that the addition and decomposition of 1,6-diaminohexane leads to a transition from crystalline to amorphous state while preserving the fundamental vanadium–phosphorus oxide phases. It results in an active graphite-type nitrogen structure and an abundance of oxygen vacancies, which promote the target reaction by virtue of numerous medium acid sites on the catalyst surface.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 13","pages":" 9801-9809"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08613a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08613a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous catalysts exhibit a plethora of oxygen vacancies, electron-rich active sites, and highly dispersed active centers, thereby yielding exceptional catalytic performance for multiple reactions. In this work, a series of amorphous V–P–N–C catalysts were synthesized using complexants and employed for catalyzing the glycerol dehydration reaction towards acrolein. Under optimized reaction conditions, the glycerol conversion reached 99.1% with an acrolein selectivity of 83.2% over the amorphous catalyst VPOC6. The comprehensive characterization results of Raman, XPS, H2-TPR, SEM, BET, and NH3-TPD, demonstrated that the addition and decomposition of 1,6-diaminohexane leads to a transition from crystalline to amorphous state while preserving the fundamental vanadium–phosphorus oxide phases. It results in an active graphite-type nitrogen structure and an abundance of oxygen vacancies, which promote the target reaction by virtue of numerous medium acid sites on the catalyst surface.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信