Tunable N-doped ultra-microporous activated carbons: enhancing O2 activation to facilitate the conversion of H2S to H2SO4 at ambient temperature†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Caiyue Zhao, Yinghong Luo, Yanshi Zhang, Daiqi Ye, Yiqiang Zhang and Junliang Wu
{"title":"Tunable N-doped ultra-microporous activated carbons: enhancing O2 activation to facilitate the conversion of H2S to H2SO4 at ambient temperature†","authors":"Caiyue Zhao, Yinghong Luo, Yanshi Zhang, Daiqi Ye, Yiqiang Zhang and Junliang Wu","doi":"10.1039/D5NJ00489F","DOIUrl":null,"url":null,"abstract":"<p >The impact of activated carbon's pore size, particularly ultra-micropores, on the composition of catalytic oxidation products from hydrogen sulfide (H<small><sub>2</sub></small>S) has been noted in the literature. Despite this, a comprehensive understanding of the process remains elusive. In this study, we fine-tuned the pore structure by modulating the activation temperature of carbon dioxide (CO<small><sub>2</sub></small>), resulting in the synthesis of nitrogen-doped carbon materials characterized by a substantial fraction of ultra-micropores. These materials demonstrated remarkable selectivity for the production of H<small><sub>2</sub></small>SO<small><sub>4</sub></small>, with selectivity values ranging from 12.86% to 50.44%, markedly surpassing the outcomes reported in existing research. Further in-depth analysis revealed a pronounced positive correlation between the selectivity for H<small><sub>2</sub></small>SO<small><sub>4</sub></small> and the prevalence of ultra-micropores. Additionally, findings from electron paramagnetic resonance (EPR) and <em>in situ</em> Raman spectroscopy have shown that ultra-micropores can effectively activate molecular oxygen (O<small><sub>2</sub></small>), thereby promoting the conversion of H<small><sub>2</sub></small>S into H<small><sub>2</sub></small>SO<small><sub>4</sub></small>. This research introduces a novel approach for the development of desulfurization catalysts that exhibit heightened selectivity for H<small><sub>2</sub></small>SO<small><sub>4</sub></small> under ambient conditions, representing a significant advancement in the field.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 14","pages":" 5773-5782"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00489f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of activated carbon's pore size, particularly ultra-micropores, on the composition of catalytic oxidation products from hydrogen sulfide (H2S) has been noted in the literature. Despite this, a comprehensive understanding of the process remains elusive. In this study, we fine-tuned the pore structure by modulating the activation temperature of carbon dioxide (CO2), resulting in the synthesis of nitrogen-doped carbon materials characterized by a substantial fraction of ultra-micropores. These materials demonstrated remarkable selectivity for the production of H2SO4, with selectivity values ranging from 12.86% to 50.44%, markedly surpassing the outcomes reported in existing research. Further in-depth analysis revealed a pronounced positive correlation between the selectivity for H2SO4 and the prevalence of ultra-micropores. Additionally, findings from electron paramagnetic resonance (EPR) and in situ Raman spectroscopy have shown that ultra-micropores can effectively activate molecular oxygen (O2), thereby promoting the conversion of H2S into H2SO4. This research introduces a novel approach for the development of desulfurization catalysts that exhibit heightened selectivity for H2SO4 under ambient conditions, representing a significant advancement in the field.

Abstract Image

可调n掺杂超微孔活性炭:增强O2活化,促进H2S在室温下转化为H2SO4
活性炭的孔径,特别是超微孔,对硫化氢(H2S)催化氧化产物组成的影响已经在文献中得到了注意。尽管如此,对这一过程的全面理解仍然难以捉摸。在这项研究中,我们通过调节二氧化碳(CO2)的活化温度来微调孔隙结构,从而合成出具有大量超微孔的氮掺杂碳材料。这些材料对H2SO4的选择性较好,选择性值在12.86% ~ 50.44%之间,明显优于已有的研究结果。进一步深入分析发现,超微孔的存在与H2SO4的选择性呈正相关。此外,电子顺磁共振(EPR)和原位拉曼光谱研究结果表明,超微孔可以有效激活分子氧(O2),从而促进H2S转化为H2SO4。本研究介绍了一种新的方法来开发脱硫催化剂,在环境条件下对H2SO4具有更高的选择性,代表了该领域的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信