{"title":"Fe-porphyrin-derived carbon nanofiber-based nanozymes: enhanced peroxidase-like activity for ultrasensitive glucose and ascorbic acid sensing†","authors":"Pradeep Singh Thakur and Muniappan Sankar","doi":"10.1039/D4MA01289E","DOIUrl":null,"url":null,"abstract":"<p >The development of efficient nanozymes for biomedical applications has garnered significant attention due to their exceptional stability and ease of storage, offering a compelling alternative to natural enzymes, which are often costly and functionally limited. In this study, we report the fabrication of Fe-porphyrin-derived carbon nanofibers (Fe-P/CNFs) as a nanozyme. These nanofibers exhibit a uniform one-dimensional morphology and demonstrate excellent catalytic performance in the oxidation of peroxidase substrates. Leveraging this enhanced peroxidase-like activity, we developed a highly sensitive colorimetric sensor for glucose detection, achieving a detection limit of 2.55 μM within a linear range of 0–200 μM. Additionally, Fe-P/CNFs exhibit robust performance as an ascorbic acid sensor, with a detection limit of 0.17 μM. These findings underscore the promise of Fe-P/CNFs as versatile and efficient nanozymes, making them strong candidates for practical applications in biosensing and clinical diagnostics.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 7","pages":" 2356-2364"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01289e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01289e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient nanozymes for biomedical applications has garnered significant attention due to their exceptional stability and ease of storage, offering a compelling alternative to natural enzymes, which are often costly and functionally limited. In this study, we report the fabrication of Fe-porphyrin-derived carbon nanofibers (Fe-P/CNFs) as a nanozyme. These nanofibers exhibit a uniform one-dimensional morphology and demonstrate excellent catalytic performance in the oxidation of peroxidase substrates. Leveraging this enhanced peroxidase-like activity, we developed a highly sensitive colorimetric sensor for glucose detection, achieving a detection limit of 2.55 μM within a linear range of 0–200 μM. Additionally, Fe-P/CNFs exhibit robust performance as an ascorbic acid sensor, with a detection limit of 0.17 μM. These findings underscore the promise of Fe-P/CNFs as versatile and efficient nanozymes, making them strong candidates for practical applications in biosensing and clinical diagnostics.