Industrial Process Monitoring Based on Deep Gaussian and Non-Gaussian Information Fusion Framework

Zhiqiang Ge
{"title":"Industrial Process Monitoring Based on Deep Gaussian and Non-Gaussian Information Fusion Framework","authors":"Zhiqiang Ge","doi":"10.1109/TAI.2024.3507732","DOIUrl":null,"url":null,"abstract":"For industrial process monitoring, Gaussian and non-Gaussian data-driven models are two important representatives that have been developed separately in the past years. Although several attempts have been made to combine Gaussian and non-Gaussian data information for integrated process monitoring, this information fusion strategy can be further enhanced under the idea and framework of deep learning. Particularly, through collaborative learning and layer-by-layer information transformation, more patterns of both Gaussian and non-Gaussian components can be effectively extracted in different hidden layers of the deep model. Then, a further Bayesian model fusion strategy is formulated to ensemble monitoring results from both Gaussian and non-Gaussian data-driven models. Therefore, the main contribution of this article is to propose a deep Gaussian and non-Gaussian information fusion framework for data-driven industrial process monitoring. Both feasibility and superiority of the developed model are confirmed through a detailed industrial benchmark case study. Compared to both Gaussian and non-Gaussian deep models, the new deep information fusion model has obtained more satisfactory monitoring results.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 4","pages":"979-988"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10770754/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For industrial process monitoring, Gaussian and non-Gaussian data-driven models are two important representatives that have been developed separately in the past years. Although several attempts have been made to combine Gaussian and non-Gaussian data information for integrated process monitoring, this information fusion strategy can be further enhanced under the idea and framework of deep learning. Particularly, through collaborative learning and layer-by-layer information transformation, more patterns of both Gaussian and non-Gaussian components can be effectively extracted in different hidden layers of the deep model. Then, a further Bayesian model fusion strategy is formulated to ensemble monitoring results from both Gaussian and non-Gaussian data-driven models. Therefore, the main contribution of this article is to propose a deep Gaussian and non-Gaussian information fusion framework for data-driven industrial process monitoring. Both feasibility and superiority of the developed model are confirmed through a detailed industrial benchmark case study. Compared to both Gaussian and non-Gaussian deep models, the new deep information fusion model has obtained more satisfactory monitoring results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信