LoRaDIP: Low-Rank Adaptation With Deep Image Prior for Generative Low-Light Image Enhancement

Zunjin Zhao;Daming Shi
{"title":"LoRaDIP: Low-Rank Adaptation With Deep Image Prior for Generative Low-Light Image Enhancement","authors":"Zunjin Zhao;Daming Shi","doi":"10.1109/TAI.2024.3499950","DOIUrl":null,"url":null,"abstract":"This article presents LoRaDIP, a novel low-light image enhancement (LLIE) model based on deep image priors (DIPs). While DIP-based enhancement models are known for their zero-shot learning, their expensive computational cost remains a challenge. In addressing this issue, our proposed LoRaDIP introduces a low-rank adaptation technique, significantly reducing computational expenses without compromising performance. The contributions of this work are threefold. First, we eliminate the need for estimating initial illumination and reflectance, opting instead to directly estimate the illumination map from the observed image in a generative fashion. The illumination is parameterized by a DIP network. Second, considering the overparameterization of DIP networks, we introduce a low-rank adaptation technique to decrease the number of trainable parameters, thereby reducing computational demands. Third, differing from the existing DIP-based models that rely on a preset fixed number of iterations to halt the optimization process of Retinex decomposition, we propose an automatic stopping criterion based on stable rank, preventing unnecessary iterations. LoRaDIP not only inherits the advantage of requiring only the single input image but also exhibits reduced computational costs while maintaining or even surpassing the performance of state-of-the-art models.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 4","pages":"909-920"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10754638/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents LoRaDIP, a novel low-light image enhancement (LLIE) model based on deep image priors (DIPs). While DIP-based enhancement models are known for their zero-shot learning, their expensive computational cost remains a challenge. In addressing this issue, our proposed LoRaDIP introduces a low-rank adaptation technique, significantly reducing computational expenses without compromising performance. The contributions of this work are threefold. First, we eliminate the need for estimating initial illumination and reflectance, opting instead to directly estimate the illumination map from the observed image in a generative fashion. The illumination is parameterized by a DIP network. Second, considering the overparameterization of DIP networks, we introduce a low-rank adaptation technique to decrease the number of trainable parameters, thereby reducing computational demands. Third, differing from the existing DIP-based models that rely on a preset fixed number of iterations to halt the optimization process of Retinex decomposition, we propose an automatic stopping criterion based on stable rank, preventing unnecessary iterations. LoRaDIP not only inherits the advantage of requiring only the single input image but also exhibits reduced computational costs while maintaining or even surpassing the performance of state-of-the-art models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信