Molecular interactions of surfactants with other chemicals in chemical flooding processes: A comprehensive review on molecular dynamics simulation studies
Xuantong Lei , Benjieming Liu , Chaojie Di , Zixiang Wei , Peng Deng , Zhangxin Chen
{"title":"Molecular interactions of surfactants with other chemicals in chemical flooding processes: A comprehensive review on molecular dynamics simulation studies","authors":"Xuantong Lei , Benjieming Liu , Chaojie Di , Zixiang Wei , Peng Deng , Zhangxin Chen","doi":"10.1016/j.cis.2025.103498","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the growing demand for fossil fuels and the transition of many oil fields into a high water-cut stage, enhanced oil recovery (EOR) techniques have become more prevalent to meet this rising demand. Among these techniques, chemical flooding stands out as an effective method, supported by numerous experimental and simulation studies. However, the complexity of a chemical slug composition under harsh reservoir conditions makes the physicochemical phenomena involved in a chemical flooding process highly intricate. To comprehensively understand the microscopic mechanisms governing the phase behavior of complex fluid systems underground, molecular dynamics (MD) simulations have been increasingly employed in recent years to investigate the molecular interactions between various chemicals involved in chemical flooding processes. In this work, we have comprehensively reviewed the recent MD studies focusing on the molecular interactions between surfactants and other chemicals in the chemical flooding processes. Based on the molecular interactions within different chemicals, various nanoscale mechanisms have been proposed to shed light on the physicochemical flow in porous media. Additionally, the MD techniques used in these studies have been summarized, and challenges in the application of MD simulations in the field of chemical flooding have been identified for improving the quality of future MD studies.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103498"},"PeriodicalIF":15.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001095","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the growing demand for fossil fuels and the transition of many oil fields into a high water-cut stage, enhanced oil recovery (EOR) techniques have become more prevalent to meet this rising demand. Among these techniques, chemical flooding stands out as an effective method, supported by numerous experimental and simulation studies. However, the complexity of a chemical slug composition under harsh reservoir conditions makes the physicochemical phenomena involved in a chemical flooding process highly intricate. To comprehensively understand the microscopic mechanisms governing the phase behavior of complex fluid systems underground, molecular dynamics (MD) simulations have been increasingly employed in recent years to investigate the molecular interactions between various chemicals involved in chemical flooding processes. In this work, we have comprehensively reviewed the recent MD studies focusing on the molecular interactions between surfactants and other chemicals in the chemical flooding processes. Based on the molecular interactions within different chemicals, various nanoscale mechanisms have been proposed to shed light on the physicochemical flow in porous media. Additionally, the MD techniques used in these studies have been summarized, and challenges in the application of MD simulations in the field of chemical flooding have been identified for improving the quality of future MD studies.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.