Aamal Rehman , Manzar Sohail , Nadeem Baig , Kai Yuan , Ahmed Abdala , Md A. Wahab
{"title":"Next-generation stimuli-responsive smart membranes: Developments in oil/water separation","authors":"Aamal Rehman , Manzar Sohail , Nadeem Baig , Kai Yuan , Ahmed Abdala , Md A. Wahab","doi":"10.1016/j.cis.2025.103487","DOIUrl":null,"url":null,"abstract":"<div><div>Effective treatment of oil-contaminated wastewater is essential due to its severe environmental and health impacts. The membrane-based separation is cost-effective, energy-efficient, and eco-friendly; however, fouling has remained a pressing issue. Stimuli-responsive membranes, which adjust their pore structure and surface properties in response to external triggers such as light, pH, and temperature, offer enhanced fouling resistance and improved separation performance. This review provides a comprehensive analysis of stimuli-responsive membranes for oil/water separation, emphasizing the role of smart polymeric materials engineered for controllable separation processes. We critically assess the strengths of these advanced membranes, including their tuneable wettability and energy-efficient operation, while identifying key limitations such as long-term stability, response time, scalability, and cost-effectiveness. Furthermore, the review explores various polymer types, synthesis methods, and fabrication techniques, evaluating their effectiveness in separation applications. Finally, the review concludes by outlining the challenges and proposing future directions to enhance the performance of stimuli-responsive membranes. By offering valuable insights into the dynamic control of membrane structures and properties, this study aims to inspire the development of next-generation stimuli-responsive membranes, drive their commercialization, and promote sustainable water treatment solutions.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103487"},"PeriodicalIF":15.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625000983","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Effective treatment of oil-contaminated wastewater is essential due to its severe environmental and health impacts. The membrane-based separation is cost-effective, energy-efficient, and eco-friendly; however, fouling has remained a pressing issue. Stimuli-responsive membranes, which adjust their pore structure and surface properties in response to external triggers such as light, pH, and temperature, offer enhanced fouling resistance and improved separation performance. This review provides a comprehensive analysis of stimuli-responsive membranes for oil/water separation, emphasizing the role of smart polymeric materials engineered for controllable separation processes. We critically assess the strengths of these advanced membranes, including their tuneable wettability and energy-efficient operation, while identifying key limitations such as long-term stability, response time, scalability, and cost-effectiveness. Furthermore, the review explores various polymer types, synthesis methods, and fabrication techniques, evaluating their effectiveness in separation applications. Finally, the review concludes by outlining the challenges and proposing future directions to enhance the performance of stimuli-responsive membranes. By offering valuable insights into the dynamic control of membrane structures and properties, this study aims to inspire the development of next-generation stimuli-responsive membranes, drive their commercialization, and promote sustainable water treatment solutions.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.