Breaking the ice: Applications of photothermal superhydrophobic materials for efficient deicing strategies

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yiqing Xue , Philip Verdross , Wenyan Liang , Robert T. Woodward , Alexander Bismarck
{"title":"Breaking the ice: Applications of photothermal superhydrophobic materials for efficient deicing strategies","authors":"Yiqing Xue ,&nbsp;Philip Verdross ,&nbsp;Wenyan Liang ,&nbsp;Robert T. Woodward ,&nbsp;Alexander Bismarck","doi":"10.1016/j.cis.2025.103489","DOIUrl":null,"url":null,"abstract":"<div><div>The accumulation of ice on the surfaces of devices has long been a significant concern for human life and production. The icing of aircraft surfaces can alter the aerodynamic shape of the aircraft, reducing its controllability and decrease the flight range. Ice buildup on wind turbine blades significantly reduces power generation efficiency. Preventing ice accumulation has thus become a focal point of research. Photothermal superhydrophobic materials are characterized by efficient photothermal energy conversion upon irradiation, thus showing promise for applications in the energy-, civil- or aerospace-engineering sectors. Photothermal superhydrophobic materials are promise to be a safe, reliable and cost-effective anti-icing/deicing strategies. In this review, the design concepts, preparation methods, performance characteristics, and application areas of different types of photothermal superhydrophobic materials are discussed. After elucidating anti-icing mechanisms, the superhydrophobic photothermal material state-of-the-art is reviewed. The problems encountered in the practical application of photothermal superhydrophobic materials and challenges to be addressed in the future are also analyzed and discussed.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103489"},"PeriodicalIF":15.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of ice on the surfaces of devices has long been a significant concern for human life and production. The icing of aircraft surfaces can alter the aerodynamic shape of the aircraft, reducing its controllability and decrease the flight range. Ice buildup on wind turbine blades significantly reduces power generation efficiency. Preventing ice accumulation has thus become a focal point of research. Photothermal superhydrophobic materials are characterized by efficient photothermal energy conversion upon irradiation, thus showing promise for applications in the energy-, civil- or aerospace-engineering sectors. Photothermal superhydrophobic materials are promise to be a safe, reliable and cost-effective anti-icing/deicing strategies. In this review, the design concepts, preparation methods, performance characteristics, and application areas of different types of photothermal superhydrophobic materials are discussed. After elucidating anti-icing mechanisms, the superhydrophobic photothermal material state-of-the-art is reviewed. The problems encountered in the practical application of photothermal superhydrophobic materials and challenges to be addressed in the future are also analyzed and discussed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信