{"title":"Integrating multi-source geospatial information using Bayesian maximum entropy: A case study on design ground snow load prediction","authors":"Kinspride Duah, Yan Sun, Brennan Bean","doi":"10.1016/j.spasta.2025.100894","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental data are often imprecise due to various limitations and uncertainties in the measuring process. As a result, they often consist of a combination of both precise and imprecise information, referred to as hard and soft data, respectively. Often in practice, soft data are characterized as intervals as a simple form to properly preserve the underlying imprecision. Bayesian maximum entropy (BME) is a generalized spatial interpolation method that processes both hard and soft data simultaneously to effectively account for both spatial uncertainty and measurement imprecision. This paper presents a rigorous evaluation to compare the performances of BME and kriging through both simulation and a case study of reliability-targeted design ground snow load (RTDSL) prediction in Utah. The dataset contains a mixture of hard and soft-interval observations, and kriging uses the soft-interval data by extracting the midpoints in addition to the hard data. The cross-validated results show that BME outperforms kriging on multiple error metrics. Specifically for hard data locations where precise observations are known, BME yields a mean error (ME) of 0.0334, a mean absolute error (MAE) of 0.2309, and a root mean squared error (RMSE) of 0.2833, whereas kriging produces a ME of 0.1960, MAE of 0.2793, and RMSE of 0.3698. These results highlight the superior prediction accuracy of BME, particularly in the presence of soft data and/or non-Gaussian hard data.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100894"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental data are often imprecise due to various limitations and uncertainties in the measuring process. As a result, they often consist of a combination of both precise and imprecise information, referred to as hard and soft data, respectively. Often in practice, soft data are characterized as intervals as a simple form to properly preserve the underlying imprecision. Bayesian maximum entropy (BME) is a generalized spatial interpolation method that processes both hard and soft data simultaneously to effectively account for both spatial uncertainty and measurement imprecision. This paper presents a rigorous evaluation to compare the performances of BME and kriging through both simulation and a case study of reliability-targeted design ground snow load (RTDSL) prediction in Utah. The dataset contains a mixture of hard and soft-interval observations, and kriging uses the soft-interval data by extracting the midpoints in addition to the hard data. The cross-validated results show that BME outperforms kriging on multiple error metrics. Specifically for hard data locations where precise observations are known, BME yields a mean error (ME) of 0.0334, a mean absolute error (MAE) of 0.2309, and a root mean squared error (RMSE) of 0.2833, whereas kriging produces a ME of 0.1960, MAE of 0.2793, and RMSE of 0.3698. These results highlight the superior prediction accuracy of BME, particularly in the presence of soft data and/or non-Gaussian hard data.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.