{"title":"Synthesis of hyperbranched polyphenylsilsesquioxane–dimethylsiloxane copolymer by the Piers-Rubinsztajn reaction and its properties","authors":"Y.K. Hasiak , I.V. Frank , Y.K. Tiulkin , M.V. Shishkanov , T.O. Ershova , D.A. Khanin , T.U. Kirila , A.P. Filippov , M.N. Temnikov","doi":"10.1016/j.eurpolymj.2025.113911","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a synthesis of hyperbranched polyphenylsilsesquioxane–dimethylsiloxane (<strong>hb-PPSQ</strong>) copolymer <em>via</em> the Piers-Rubinsztajn (PR) reaction has been developed from a PhSi(OEt)<sub>2</sub>OSiMe<sub>2</sub>H AB<sub>2</sub>-type monomer. The <strong>hb-PPSQ</strong> formation pathway and the influence of reaction conditions (the monomer feed rate, concentration and amount of the monomer, reaction temperature) on the molar mass characteristics of the resulting <strong>hb-PPSQs</strong> were investigated by <sup>1</sup>H, <sup>29</sup>Si NMR, MALDI, FTIR, and GPC techniques. The reaction of the said monomer initially produces cyclic phenylethoxydimethylsiloxane. Further molar mass growth is possible when a fresh monomer is added to the reaction cycle. Thus, EtOSi-end capped <strong>hb-PPSQ</strong> with a molar mass of 24.5 kDa and DB≈0.5 was obtained. The terminal ethoxy groups of the resulting <strong>hb-PPSQ</strong> can be modified by the one-pot PR reaction with triorganosilane to give <strong>hb-PPSQs</strong> with a variety of end groups. In this way, SiMe<sub>2</sub>Ph- and SiMe<sub>2</sub>Vin-terminated <strong>hb-PPSQs</strong> were obtained. Their hydrodynamic and thermal properties were studied. These polymers have low glass transition temperatures (∼ −60 °C) along with high onset decomposition temperatures (∼ 400 °C).</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"230 ","pages":"Article 113911"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725001995","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a synthesis of hyperbranched polyphenylsilsesquioxane–dimethylsiloxane (hb-PPSQ) copolymer via the Piers-Rubinsztajn (PR) reaction has been developed from a PhSi(OEt)2OSiMe2H AB2-type monomer. The hb-PPSQ formation pathway and the influence of reaction conditions (the monomer feed rate, concentration and amount of the monomer, reaction temperature) on the molar mass characteristics of the resulting hb-PPSQs were investigated by 1H, 29Si NMR, MALDI, FTIR, and GPC techniques. The reaction of the said monomer initially produces cyclic phenylethoxydimethylsiloxane. Further molar mass growth is possible when a fresh monomer is added to the reaction cycle. Thus, EtOSi-end capped hb-PPSQ with a molar mass of 24.5 kDa and DB≈0.5 was obtained. The terminal ethoxy groups of the resulting hb-PPSQ can be modified by the one-pot PR reaction with triorganosilane to give hb-PPSQs with a variety of end groups. In this way, SiMe2Ph- and SiMe2Vin-terminated hb-PPSQs were obtained. Their hydrodynamic and thermal properties were studied. These polymers have low glass transition temperatures (∼ −60 °C) along with high onset decomposition temperatures (∼ 400 °C).
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.