{"title":"Cooperative chemoenzymatic approaches to transforming CO2 into high-value products","authors":"Jianming Liu , Xiaowen Xia , Aocong Guan , Anping Zeng","doi":"10.1016/j.cogsc.2025.101016","DOIUrl":null,"url":null,"abstract":"<div><div>Cooperative chemoenzymatic catalysis, combining the strengths of chemical and enzymatic reactions, has emerged as a powerful strategy for advancing innovative biomanufacturing platforms leveraging CO<sub>2</sub> as a feedstock. This approach enables the synthesis of value-added molecules and materials from abundant low-carbon resources. In this review, we first highlight the critical role that chemoenzymatic reactions play in prebiotic chemistry, offering valuable insights into the design of complex biomolecules from simple precursors. We then examine the opportunities within chemoenzymatic synthesis through prominent examples: the ancient formose reaction followed by biotransformation, the electrochemical conversion of CO<sub>2</sub> into energetic C1 and C2 compounds with subsequent enzymatic conversions for producing long carbon-chain products, the regeneration of energetic molecules such as ATP and NAD(P)H cofactors, and the integration of chemoenzymatic reactions in carbon-chain elongation and downstream purification processes. This synergistic approach not only maximizes the utility of CO<sub>2</sub> as a feedstock but also contributes to the development of sustainable and efficient methods for CO<sub>2</sub> utilization, advancing the fields of green chemistry and sustainable industrial practices.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"53 ","pages":"Article 101016"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223625000203","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cooperative chemoenzymatic catalysis, combining the strengths of chemical and enzymatic reactions, has emerged as a powerful strategy for advancing innovative biomanufacturing platforms leveraging CO2 as a feedstock. This approach enables the synthesis of value-added molecules and materials from abundant low-carbon resources. In this review, we first highlight the critical role that chemoenzymatic reactions play in prebiotic chemistry, offering valuable insights into the design of complex biomolecules from simple precursors. We then examine the opportunities within chemoenzymatic synthesis through prominent examples: the ancient formose reaction followed by biotransformation, the electrochemical conversion of CO2 into energetic C1 and C2 compounds with subsequent enzymatic conversions for producing long carbon-chain products, the regeneration of energetic molecules such as ATP and NAD(P)H cofactors, and the integration of chemoenzymatic reactions in carbon-chain elongation and downstream purification processes. This synergistic approach not only maximizes the utility of CO2 as a feedstock but also contributes to the development of sustainable and efficient methods for CO2 utilization, advancing the fields of green chemistry and sustainable industrial practices.
期刊介绍:
The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.