Marco Gerola , Francesco Cecinato , Vincent Leclercq , Philip J. Vardon
{"title":"Energy quay walls: Performance analysis and optimisation","authors":"Marco Gerola , Francesco Cecinato , Vincent Leclercq , Philip J. Vardon","doi":"10.1016/j.gete.2025.100664","DOIUrl":null,"url":null,"abstract":"<div><div>Energy Quay Walls (EQWs) are innovative energy geostructures with the unique capability to exchange heat with both soil and open water. Although previous laboratory testing demonstrated a promising energy efficiency for this type of system, its novelty necessitated thorough research to advance comprehension of its thermal behaviour and optimise energy efficiency. This paper conducts an in-depth examination of EQWs, employing numerical models validated against real data from a full scale test in Delft, The Netherlands.</div><div>Two Finite Element numerical models were developed to (i) reconstruct the undisturbed (i.e. pre-geothermal activation) temperature profile within the soil and (ii) conduct a comprehensive (3D) analysis of heat exchange processes in an EQW application (i.e. during geothermal activation), calibrating relevant parameters with field test data, providing valuable insights into its energy efficiency. Following validation, the geothermal activation model was employed to assess the impact of the flow regime within the heat exchanger pipes and the velocity of the open water on the energy efficiency of the EQW system. Additionally, the contributions of soil, water, and air to the energy gain are investigated. The results indicate that the primary source of energy gain is from open water, and the dominance of this contribution is further increased by the presence of turbulent flow within the heat exchanger pipes. However, the soil can play a key role in short term energy delivery. Furthermore, this study emphasises the importance of the open water movement, revealing a 48<span><math><mtext>%</mtext></math></span> reduction in energy extraction for fully stationary water scenarios.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100664"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000292","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy Quay Walls (EQWs) are innovative energy geostructures with the unique capability to exchange heat with both soil and open water. Although previous laboratory testing demonstrated a promising energy efficiency for this type of system, its novelty necessitated thorough research to advance comprehension of its thermal behaviour and optimise energy efficiency. This paper conducts an in-depth examination of EQWs, employing numerical models validated against real data from a full scale test in Delft, The Netherlands.
Two Finite Element numerical models were developed to (i) reconstruct the undisturbed (i.e. pre-geothermal activation) temperature profile within the soil and (ii) conduct a comprehensive (3D) analysis of heat exchange processes in an EQW application (i.e. during geothermal activation), calibrating relevant parameters with field test data, providing valuable insights into its energy efficiency. Following validation, the geothermal activation model was employed to assess the impact of the flow regime within the heat exchanger pipes and the velocity of the open water on the energy efficiency of the EQW system. Additionally, the contributions of soil, water, and air to the energy gain are investigated. The results indicate that the primary source of energy gain is from open water, and the dominance of this contribution is further increased by the presence of turbulent flow within the heat exchanger pipes. However, the soil can play a key role in short term energy delivery. Furthermore, this study emphasises the importance of the open water movement, revealing a 48 reduction in energy extraction for fully stationary water scenarios.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.