Aubin–Nitsche-type estimates for space-time FOSLS for parabolic PDEs

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Thomas Führer , Gregor Gantner
{"title":"Aubin–Nitsche-type estimates for space-time FOSLS for parabolic PDEs","authors":"Thomas Führer ,&nbsp;Gregor Gantner","doi":"10.1016/j.camwa.2025.03.017","DOIUrl":null,"url":null,"abstract":"<div><div>We develop Aubin–Nitsche-type estimates for recently proposed first-order system least-squares finite element methods (FOSLS) for the heat equation. Under certain assumptions, which are satisfied if the spatial domain is convex and the heat source and initial datum are sufficiently smooth, we prove that the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error of approximations of the scalar field variable converges at a higher rate than the overall error. Furthermore, a higher-order conservation property is shown. In addition, we discuss quasi-optimality in weaker norms. Numerical experiments confirm our theoretical findings.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"186 ","pages":"Pages 155-170"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001129","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We develop Aubin–Nitsche-type estimates for recently proposed first-order system least-squares finite element methods (FOSLS) for the heat equation. Under certain assumptions, which are satisfied if the spatial domain is convex and the heat source and initial datum are sufficiently smooth, we prove that the L2 error of approximations of the scalar field variable converges at a higher rate than the overall error. Furthermore, a higher-order conservation property is shown. In addition, we discuss quasi-optimality in weaker norms. Numerical experiments confirm our theoretical findings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信