{"title":"Discretization theorems for entire functions of exponential type","authors":"Michael I. Ganzburg","doi":"10.1016/j.jmaa.2025.129510","DOIUrl":null,"url":null,"abstract":"<div><div>We prove <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span>–discretization inequalities for entire functions <em>f</em> of exponential type in the form<span><span><span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></msub><mo>≤</mo><msup><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>ν</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msup><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>)</mo></mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo><mo>,</mo></mrow></math></span></span></span> with estimates for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We find a necessary and sufficient condition on <span><math><mi>Ω</mi><mo>=</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>ν</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> for the right inequality to be valid and a sufficient condition on Ω for the left one to hold true. In addition, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>)</mo></math></span>-discretization inequalities on an <em>m</em>-dimensional cube are proved for entire functions of exponential type and exponential polynomials.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129510"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002914","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove –discretization inequalities for entire functions f of exponential type in the form with estimates for and . We find a necessary and sufficient condition on for the right inequality to be valid and a sufficient condition on Ω for the left one to hold true. In addition, -discretization inequalities on an m-dimensional cube are proved for entire functions of exponential type and exponential polynomials.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.