A kind of fast successive permutation iterative algorithms with the relaxation factor for nonlinear radiation diffusion problem

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Qiuyan Xu, Zhiyong Liu
{"title":"A kind of fast successive permutation iterative algorithms with the relaxation factor for nonlinear radiation diffusion problem","authors":"Qiuyan Xu,&nbsp;Zhiyong Liu","doi":"10.1016/j.camwa.2025.03.033","DOIUrl":null,"url":null,"abstract":"<div><div>When the radiation is in equilibrium with matter, a nonlinear parabolic equation is formed by the approximation of single temperature diffusion equation. In the actual numerical simulation, most of the time is used to solve the linear equations by the implicit discretization so as to retain the stability. In this paper, the discretization of the nonlinear diffusion equation on time is still full-implicit, but we construct several new nonlinear iterative schemes for 1D, 2D and 3D radiation diffusion equation, and then a class of fast successive permutation iterative algorithms is proposed. The matrix analysis and convergence are presented. The numerical experiments are provided to examine the accuracy and superior between the Picard iteration method with the presented algorithms.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"187 ","pages":"Pages 132-149"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001270","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

When the radiation is in equilibrium with matter, a nonlinear parabolic equation is formed by the approximation of single temperature diffusion equation. In the actual numerical simulation, most of the time is used to solve the linear equations by the implicit discretization so as to retain the stability. In this paper, the discretization of the nonlinear diffusion equation on time is still full-implicit, but we construct several new nonlinear iterative schemes for 1D, 2D and 3D radiation diffusion equation, and then a class of fast successive permutation iterative algorithms is proposed. The matrix analysis and convergence are presented. The numerical experiments are provided to examine the accuracy and superior between the Picard iteration method with the presented algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信