Yixuan Gong , Ruoyu Wang , Siyu Pan , Zeyu Ma , Xiyu Zhu , Ye Song , Haitao Song , Lei Tao , Dongxue Cao , Wei Lin
{"title":"Exploring inorganic particle-inclusive RAFT-controlled radical polymerization: Advancing precision in ceramic 3D printing","authors":"Yixuan Gong , Ruoyu Wang , Siyu Pan , Zeyu Ma , Xiyu Zhu , Ye Song , Haitao Song , Lei Tao , Dongxue Cao , Wei Lin","doi":"10.1016/j.addma.2025.104757","DOIUrl":null,"url":null,"abstract":"<div><div>Stereolithography is a highly effective method for fabricating intricate ceramic parts, offering fast molding speeds and a diverse range of material options. However, it still faces significant precision challenges due to the incorporation of inorganic ceramic particles, which alters the propagation path of the incident light and affects the region where the polymerization reaction occurs. Herein, we regulate the polymerization reaction kinetics by introducing reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization into ceramic stereolithography, successfully reducing the minimum printable feature size of Al<sub>2</sub>O<sub>3</sub> photosensitive slurry to 200 μm and achieving over 86.7 % fidelity across all tested feature sizes. The RAFT-based ceramic stereolithography system enhances the uniformity of the polymer network and reduces the formation of high cross-link density microgels with a high refractive index. Additionally, incorporating RAFT agents increases the critical energies in both depth and width directions, mitigating out-of-target area curing caused by radical diffusion. Furthermore, the RAFT formulation significantly reduces the attenuation length in the width direction, broadening the printing operational window and improving dimensional stability. Finally, the cross-section exposure distribution simulations under varying conditions suggest that RAFT-slurry reduces the broadening of the cure diameter caused by scattering effects and enhances inter-layer interactions during printing. This work presents a new technological approach for the advanced manufacturing of fine ceramic structures.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"103 ","pages":"Article 104757"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001216","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Stereolithography is a highly effective method for fabricating intricate ceramic parts, offering fast molding speeds and a diverse range of material options. However, it still faces significant precision challenges due to the incorporation of inorganic ceramic particles, which alters the propagation path of the incident light and affects the region where the polymerization reaction occurs. Herein, we regulate the polymerization reaction kinetics by introducing reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization into ceramic stereolithography, successfully reducing the minimum printable feature size of Al2O3 photosensitive slurry to 200 μm and achieving over 86.7 % fidelity across all tested feature sizes. The RAFT-based ceramic stereolithography system enhances the uniformity of the polymer network and reduces the formation of high cross-link density microgels with a high refractive index. Additionally, incorporating RAFT agents increases the critical energies in both depth and width directions, mitigating out-of-target area curing caused by radical diffusion. Furthermore, the RAFT formulation significantly reduces the attenuation length in the width direction, broadening the printing operational window and improving dimensional stability. Finally, the cross-section exposure distribution simulations under varying conditions suggest that RAFT-slurry reduces the broadening of the cure diameter caused by scattering effects and enhances inter-layer interactions during printing. This work presents a new technological approach for the advanced manufacturing of fine ceramic structures.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.