{"title":"Nonlocal sublinear elliptic problems involving measures","authors":"Aye Chan May, Adisak Seesanea","doi":"10.1016/j.jmaa.2025.129513","DOIUrl":null,"url":null,"abstract":"<div><div>We study Dirichlet problems for fractional Laplace equations of the form <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>n</mi></math></span> where the nonlinearity <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>M</mi></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>+</mo><mi>ω</mi></math></span> involves sublinear terms with <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo><</mo><mn>1</mn></math></span> and the coefficients <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>ω</mi></math></span> are nonnegative locally finite Borel measures on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We develop a potential theoretic approach for the existence of positive minimal solutions in Lorentz spaces to the problems under certain assumptions on <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <em>ω</em>. The uniqueness properties of such solutions are discussed. Our techniques are also applicable to similar sublinear problems on uniform bounded domains when <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></math></span>, or on arbitrary domains with positive Green's functions in the classical case <span><math><mi>α</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129513"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500294X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study Dirichlet problems for fractional Laplace equations of the form in for where the nonlinearity involves sublinear terms with and the coefficients are nonnegative locally finite Borel measures on . We develop a potential theoretic approach for the existence of positive minimal solutions in Lorentz spaces to the problems under certain assumptions on and ω. The uniqueness properties of such solutions are discussed. Our techniques are also applicable to similar sublinear problems on uniform bounded domains when , or on arbitrary domains with positive Green's functions in the classical case .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.