Response surface analysis of toluene biodegradation in wastewater using sand soil biofilm systems

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gaber M. Edris , Ibrahim Mustafa , Nasser Almutlaq , Mohamed Helmy Abdel-Aziz
{"title":"Response surface analysis of toluene biodegradation in wastewater using sand soil biofilm systems","authors":"Gaber M. Edris ,&nbsp;Ibrahim Mustafa ,&nbsp;Nasser Almutlaq ,&nbsp;Mohamed Helmy Abdel-Aziz","doi":"10.1016/j.rechem.2025.102232","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the optimization of biological treatment for toluene-contaminated wastewater using biofilms developed in sand soil media. <em>Pseudomonas aeruginosa</em> was cultivated on fine and coarse sand media in Perspex column reactors to evaluate the effects of contact time, biomass dosage, liquid flow rate, and initial toluene concentration on % removal efficiency. Response Surface Methodology (RSM) was employed to model and optimize the process parameters, identifying significant interactions between variables. Fine sand media outperformed coarse sand, achieving higher removal efficiency due to increased surface area, improved biofilm adhesion, and extended contact time. ANOVA results confirmed the model's robustness, with contact time and initial toluene concentration emerging as critical factors. The optimization revealed maximum removal efficiency (87.1 %) under optimal conditions: 189.4 h of contact time, 170.664 mg L<sup>−1</sup> biomass dosage, 0.303 L min<sup>−1</sup> liquid flow rate, and 538.25 mg L<sup>−1</sup> initial toluene concentration. These findings highlight the potential of biofilm-based treatment systems for industrial wastewater, offering an eco-friendly and cost-effective solution. The study underscores the importance of integrating RSM in designing efficient and scalable wastewater treatment processes.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"15 ","pages":"Article 102232"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625002152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the optimization of biological treatment for toluene-contaminated wastewater using biofilms developed in sand soil media. Pseudomonas aeruginosa was cultivated on fine and coarse sand media in Perspex column reactors to evaluate the effects of contact time, biomass dosage, liquid flow rate, and initial toluene concentration on % removal efficiency. Response Surface Methodology (RSM) was employed to model and optimize the process parameters, identifying significant interactions between variables. Fine sand media outperformed coarse sand, achieving higher removal efficiency due to increased surface area, improved biofilm adhesion, and extended contact time. ANOVA results confirmed the model's robustness, with contact time and initial toluene concentration emerging as critical factors. The optimization revealed maximum removal efficiency (87.1 %) under optimal conditions: 189.4 h of contact time, 170.664 mg L−1 biomass dosage, 0.303 L min−1 liquid flow rate, and 538.25 mg L−1 initial toluene concentration. These findings highlight the potential of biofilm-based treatment systems for industrial wastewater, offering an eco-friendly and cost-effective solution. The study underscores the importance of integrating RSM in designing efficient and scalable wastewater treatment processes.

Abstract Image

沙土生物膜系统降解废水中甲苯的响应面分析
研究了在砂土介质中制备生物膜对甲苯污染废水进行生物处理的优化工艺。采用有机玻璃塔式反应器,在细砂和粗砂培养基上培养铜绿假单胞菌,考察接触时间、生物质投加量、液体流速和初始甲苯浓度对%去除率的影响。采用响应面法(RSM)对工艺参数进行建模和优化,识别变量之间的显著交互作用。细砂介质优于粗砂,由于表面积增加,生物膜附着力改善,接触时间延长,因此去除效率更高。方差分析结果证实了模型的稳健性,接触时间和初始甲苯浓度成为关键因素。优化结果表明,在接触时间为189.4 h、生物质投加量为170.664 mg L−1、液体流速为0.303 L min−1、甲苯初始浓度为538.25 mg L−1的条件下,最大去除率为87.1%。这些发现突出了基于生物膜的工业废水处理系统的潜力,提供了一种环保和经济有效的解决方案。该研究强调了集成RSM在设计高效和可扩展的废水处理过程中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信