On asymptotics of oscillatory solutions to nth-order delay differential equations

IF 1.2 3区 数学 Q1 MATHEMATICS
Elena Braverman , Alexander Domoshnitsky , John Ioannis Stavroulakis
{"title":"On asymptotics of oscillatory solutions to nth-order delay differential equations","authors":"Elena Braverman ,&nbsp;Alexander Domoshnitsky ,&nbsp;John Ioannis Stavroulakis","doi":"10.1016/j.jmaa.2025.129507","DOIUrl":null,"url":null,"abstract":"<div><div>We study bounded and decaying to zero solutions of the delay differential equation<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>−</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>for</mtext><mspace></mspace><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><mi>φ</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mspace></mspace><mtext>for </mtext><mspace></mspace><mi>ξ</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo></math></span></span></span> Kondrat'ev and Kiguradze introduced and defined principles of asymptotic behavior for its solution in the sense of the trichotomy: oscillatory, non-oscillatory with absolute values monotonically decaying to zero or monotonically increasing to ∞. Expanding upon such studies, we estimate the oscillation amplitudes of solutions. Decay to zero is established through fast oscillation: once distances between zeros are small enough, the Grönwall inequality growth estimate implies the amplitudes decrease to zero as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Exact growth estimates and calculation of these distances between zeros are proposed through evaluation for the spectral radii of some compact operators associated with the Green's function for an <em>n</em>-point problem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129507"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002884","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study bounded and decaying to zero solutions of the delay differential equationx(n)(t)+i=1mpi(t)x(tτi(t))=0fort[0,),t0,x(ξ)=φ(ξ)for ξ<0. Kondrat'ev and Kiguradze introduced and defined principles of asymptotic behavior for its solution in the sense of the trichotomy: oscillatory, non-oscillatory with absolute values monotonically decaying to zero or monotonically increasing to ∞. Expanding upon such studies, we estimate the oscillation amplitudes of solutions. Decay to zero is established through fast oscillation: once distances between zeros are small enough, the Grönwall inequality growth estimate implies the amplitudes decrease to zero as t. Exact growth estimates and calculation of these distances between zeros are proposed through evaluation for the spectral radii of some compact operators associated with the Green's function for an n-point problem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信