Cellulose nanofibers boost soil water availability, plant growth, and irrigation water use efficiency under deficit irrigation

IF 5.4 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
An Thuy Ngo , Manh Cong Nguyen , Morihiro Maeda , Yasushi Mori
{"title":"Cellulose nanofibers boost soil water availability, plant growth, and irrigation water use efficiency under deficit irrigation","authors":"An Thuy Ngo ,&nbsp;Manh Cong Nguyen ,&nbsp;Morihiro Maeda ,&nbsp;Yasushi Mori","doi":"10.1016/j.catena.2025.108998","DOIUrl":null,"url":null,"abstract":"<div><div>Under climate change, even previously rainfall-prone areas may experience droughts, and effective strategies are vital for soil conservation. Owing to their cutting-edge water absorption and storage properties, cellulose nanofibers (CNF) are expected to increase soil water availability and help plants resist water stress. However, the role of CNF in improving plant growth and soil water retention under various irrigation regimes is not yet known. We evaluated the effects of CNFs on plant available water (PAW), germination, plant growth, and irrigation water use efficiency (IWUE) under both adequate and deficit irrigation conditions. Plant cultivation experiments were conducted using different CNF dosages (0%, 0.1%, 0.5%, and 1.0%), irrigation levels (I100, I50, and I25), and soil types (sandy and silty loam). The results indicated that CNF significantly increased field capacity (FC) and PAW in both soil types, with PAW in CNF-amended soils increasing by up to 110% and 88% in sandy and silty loam soil, respectively, at 1% CNF dosage. In germination tests, CNF showed no phytotoxicity and supported the germination process during water stress, with enhancements of up to 64% and 163% at I50 and up to 125% and 214% at I25 in germination percentage and germination index, respectively. Plant growth experiments revealed that CNF addition helped plants resist water stress, maintaining plant height and weight close to those under full irrigation, while using 50% less water. IWUE analyses demonstrated that CNF enhanced IWUE, with increases of up to 56% under sufficient watering (I100), 169% under moderate water stress (I50), and 120% under severe water stress (I25), at 1% CNF dosage. These findings highlight the potential of CNF as a multifaceted amendment, offering practical solutions for addressing water scarcity challenges and contributing to more resilient and sustainable agricultural practices.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"254 ","pages":"Article 108998"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816225003005","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Under climate change, even previously rainfall-prone areas may experience droughts, and effective strategies are vital for soil conservation. Owing to their cutting-edge water absorption and storage properties, cellulose nanofibers (CNF) are expected to increase soil water availability and help plants resist water stress. However, the role of CNF in improving plant growth and soil water retention under various irrigation regimes is not yet known. We evaluated the effects of CNFs on plant available water (PAW), germination, plant growth, and irrigation water use efficiency (IWUE) under both adequate and deficit irrigation conditions. Plant cultivation experiments were conducted using different CNF dosages (0%, 0.1%, 0.5%, and 1.0%), irrigation levels (I100, I50, and I25), and soil types (sandy and silty loam). The results indicated that CNF significantly increased field capacity (FC) and PAW in both soil types, with PAW in CNF-amended soils increasing by up to 110% and 88% in sandy and silty loam soil, respectively, at 1% CNF dosage. In germination tests, CNF showed no phytotoxicity and supported the germination process during water stress, with enhancements of up to 64% and 163% at I50 and up to 125% and 214% at I25 in germination percentage and germination index, respectively. Plant growth experiments revealed that CNF addition helped plants resist water stress, maintaining plant height and weight close to those under full irrigation, while using 50% less water. IWUE analyses demonstrated that CNF enhanced IWUE, with increases of up to 56% under sufficient watering (I100), 169% under moderate water stress (I50), and 120% under severe water stress (I25), at 1% CNF dosage. These findings highlight the potential of CNF as a multifaceted amendment, offering practical solutions for addressing water scarcity challenges and contributing to more resilient and sustainable agricultural practices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信