Simultaneously improving strength and corrosion resistance of additively manufactured Mg-Gd-Zr alloy by in-situ alloying with Al

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Ziyi Liu, Qingchen Deng, Yiwen Ding, Ziyan Li, Jiacheng Wang, Liming Peng
{"title":"Simultaneously improving strength and corrosion resistance of additively manufactured Mg-Gd-Zr alloy by in-situ alloying with Al","authors":"Ziyi Liu,&nbsp;Qingchen Deng,&nbsp;Yiwen Ding,&nbsp;Ziyan Li,&nbsp;Jiacheng Wang,&nbsp;Liming Peng","doi":"10.1016/j.addlet.2025.100279","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing of magnesium (Mg) alloy components with intricate geometries via laser powder bed fusion (LPBF) offers significant advantages for lightweight engineering applications. However, as a commonly issue of Mg alloys, the corrosion resistance of LPBF-Mg alloys is even worse than their cast and deformed counterparts. In-situ alloying provides a rapid pathway for composition modification tailored for the LPBF process. In this study, aluminum (Al) is introduced through in-situ alloying to prepare Mg-10Gd-xAl-Zr (GA10xK, <em>x</em> = 0.5, 1, 2 wt. %) alloys using blended Mg-10Gd-Zr and Mg-15Al powders. By employing a lower scanning speed during LPBF, a uniform distribution of Al throughout the as-built components is achieved. The increase in Al content leads to the progressive enhancement in grain refinement and the transformation of secondary phases from Mg<sub>3</sub>Gd to Al<sub>2</sub>Gd with a significant reduction in size and a notable increase in number density. These microstructural transformations yield a synchronous enhancement in strength and corrosion resistance with increasing Al content. The yield strength and ultimate tensile strength of the GA102K alloy reach 328 MPa and 350 MPa, respectively, with a minimized corrosion rate of 0.787 mm/yr., surpassing the mechanical and corrosion performance of both LPBF and semi-continuous cast G10K alloys.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100279"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing of magnesium (Mg) alloy components with intricate geometries via laser powder bed fusion (LPBF) offers significant advantages for lightweight engineering applications. However, as a commonly issue of Mg alloys, the corrosion resistance of LPBF-Mg alloys is even worse than their cast and deformed counterparts. In-situ alloying provides a rapid pathway for composition modification tailored for the LPBF process. In this study, aluminum (Al) is introduced through in-situ alloying to prepare Mg-10Gd-xAl-Zr (GA10xK, x = 0.5, 1, 2 wt. %) alloys using blended Mg-10Gd-Zr and Mg-15Al powders. By employing a lower scanning speed during LPBF, a uniform distribution of Al throughout the as-built components is achieved. The increase in Al content leads to the progressive enhancement in grain refinement and the transformation of secondary phases from Mg3Gd to Al2Gd with a significant reduction in size and a notable increase in number density. These microstructural transformations yield a synchronous enhancement in strength and corrosion resistance with increasing Al content. The yield strength and ultimate tensile strength of the GA102K alloy reach 328 MPa and 350 MPa, respectively, with a minimized corrosion rate of 0.787 mm/yr., surpassing the mechanical and corrosion performance of both LPBF and semi-continuous cast G10K alloys.

Abstract Image

通过原位合金化铝,同时提高了增材制造Mg-Gd-Zr合金的强度和耐腐蚀性
通过激光粉末床熔合(LPBF)增材制造具有复杂几何形状的镁(Mg)合金部件为轻量化工程应用提供了显着优势。然而,作为镁合金的一个普遍问题,lpbf -镁合金的耐腐蚀性甚至比铸造和变形的镁合金更差。原位合金化为LPBF工艺提供了一种快速的成分改性途径。本研究采用原位合金化方法引入铝(Al),用Mg-10Gd-Zr和Mg-15Al混合粉末制备Mg-10Gd-xAl-Zr (GA10xK, x = 0.5, 1, 2 wt. %)合金。通过在LPBF过程中采用较低的扫描速度,可以实现Al在整个构建组件中的均匀分布。随着Al含量的增加,晶粒细化程度逐渐增强,二次相由Mg3Gd向Al2Gd转变,晶粒尺寸显著减小,数量密度显著增加。随着Al含量的增加,这些微观结构的转变产生了强度和耐腐蚀性的同步增强。GA102K合金的屈服强度和极限抗拉强度分别达到328 MPa和350 MPa,腐蚀速率最小为0.787 mm/yr。,超过了LPBF和半连铸G10K合金的机械和腐蚀性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信