Cytological profiling of trypanocidal principles from Aloe barbadensis and Taraxacum officinale

Q3 Pharmacology, Toxicology and Pharmaceutics
Pearl Ihuoma Akazue , Neils Ben Quashie , Dorcas Osei-Safo , Sue Vaughan , Harry P. de Koning , Theresa Manful Gwira
{"title":"Cytological profiling of trypanocidal principles from Aloe barbadensis and Taraxacum officinale","authors":"Pearl Ihuoma Akazue ,&nbsp;Neils Ben Quashie ,&nbsp;Dorcas Osei-Safo ,&nbsp;Sue Vaughan ,&nbsp;Harry P. de Koning ,&nbsp;Theresa Manful Gwira","doi":"10.1016/j.phyplu.2025.100793","DOIUrl":null,"url":null,"abstract":"<div><div>The use of herbal medicines to treat ailments is a common practice in several regions in Africa, relying on knowledge systems that have evolved over several generations. These herbal remedies are often based on anecdotal claims, many of which lack scientific validation. This study investigates the mode of action of two bioactive fractions, F1 (IC<sub>50</sub>: 8.5 µg/mL) and F5 (IC<sub>50</sub>: 7.4 µg/mL), derived from a dichloromethane extract of a herbal mixture, consisting of <em>Aloe barbadensis</em> and <em>Taraxacum officinale</em>, that is commonly used in Ghana to treat parasitic fevers. Both fractions exhibited trypanocidal effects with minimal cytotoxicity to mammalian cells. F5 induced necrotic cell death through mitochondrial oxidative stress, evidenced by a 3.5-fold increase in mitochondrial reactive oxygen species at 2 × IC<sub>50</sub> (<em>p</em>&lt; 0.0001) and significant mitochondrial membrane depolarization (<em>p</em>&lt; 0.01). In contrast, F1 primarily disrupted kinetoplast segregation, increasing 2K1 N cells by 3.2-fold at 1 × IC<sub>50</sub> (<em>p</em>&lt; 0.0001) and instigating an accumulation of dyskinetoplastic cells (0KXN). Both fractions induced morphological distortions, nuclear fragmentation, and loss of flagellar integrity. This study provides the first mechanistic insights into the antitrypanosomal activity of bioactive fractions obtained from a mixture of <em>A. barbadensis</em> and <em>T. officinale</em>. The distinct targeting of mitochondrial ROS production (F5) and kinetoplast replication (F1) highlights their potential as leads for the development of new antitrypanosomal drugs with novel mechanisms of action. These findings reinforce the value of ethnomedicinal plants as sources of novel bioactive compounds.</div></div>","PeriodicalId":34599,"journal":{"name":"Phytomedicine Plus","volume":"5 2","pages":"Article 100793"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667031325000661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

The use of herbal medicines to treat ailments is a common practice in several regions in Africa, relying on knowledge systems that have evolved over several generations. These herbal remedies are often based on anecdotal claims, many of which lack scientific validation. This study investigates the mode of action of two bioactive fractions, F1 (IC50: 8.5 µg/mL) and F5 (IC50: 7.4 µg/mL), derived from a dichloromethane extract of a herbal mixture, consisting of Aloe barbadensis and Taraxacum officinale, that is commonly used in Ghana to treat parasitic fevers. Both fractions exhibited trypanocidal effects with minimal cytotoxicity to mammalian cells. F5 induced necrotic cell death through mitochondrial oxidative stress, evidenced by a 3.5-fold increase in mitochondrial reactive oxygen species at 2 × IC50 (p< 0.0001) and significant mitochondrial membrane depolarization (p< 0.01). In contrast, F1 primarily disrupted kinetoplast segregation, increasing 2K1 N cells by 3.2-fold at 1 × IC50 (p< 0.0001) and instigating an accumulation of dyskinetoplastic cells (0KXN). Both fractions induced morphological distortions, nuclear fragmentation, and loss of flagellar integrity. This study provides the first mechanistic insights into the antitrypanosomal activity of bioactive fractions obtained from a mixture of A. barbadensis and T. officinale. The distinct targeting of mitochondrial ROS production (F5) and kinetoplast replication (F1) highlights their potential as leads for the development of new antitrypanosomal drugs with novel mechanisms of action. These findings reinforce the value of ethnomedicinal plants as sources of novel bioactive compounds.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine Plus
Phytomedicine Plus Medicine-Complementary and Alternative Medicine
CiteScore
3.70
自引率
0.00%
发文量
178
审稿时长
81 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信