{"title":"Normal edge-transitive Cayley graphs on non-abelian simple groups","authors":"Xing Zhang, Yan-Quan Feng, Fu-Gang Yin, Jin-Xin Zhou","doi":"10.1016/j.jcta.2025.106050","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>Γ</em> be a Cayley graph on a finite group <em>G</em>, and let <span><math><msub><mrow><mi>N</mi></mrow><mrow><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> be the normalizer of <span><math><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (the right regular representation of <em>G</em>) in the full automorphism group <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> of <em>Γ</em>. We say that <em>Γ</em> is a normal Cayley graph on <em>G</em> if <span><math><msub><mrow><mi>N</mi></mrow><mrow><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>=</mo><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>, and that <em>Γ</em> is a normal edge-transitive Cayley graph on <em>G</em> if <span><math><msub><mrow><mi>N</mi></mrow><mrow><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>R</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> acts transitively on the edge set of <em>Γ</em>. In 1999, Praeger proved that every connected normal edge-transitive Cayley graph on a finite non-abelian simple group of valency 3 is normal. As an extension of this, in this paper, we prove that every connected normal edge-transitive Cayley graph on a finite non-abelian simple group of valency <em>p</em> is normal for each prime <em>p</em>. This, however, is not true for composite valency. We give a method to construct connected normal edge-transitive but non-normal Cayley graphs of certain groups, and using this, we prove that if <em>G</em> is either <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> for an odd prime <span><math><mi>q</mi><mo>≥</mo><mn>5</mn></math></span>, or <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>, then there exists a connected normal edge-transitive but non-normal 8-valent Cayley graph of <em>G</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"215 ","pages":"Article 106050"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000457","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let Γ be a Cayley graph on a finite group G, and let be the normalizer of (the right regular representation of G) in the full automorphism group of Γ. We say that Γ is a normal Cayley graph on G if , and that Γ is a normal edge-transitive Cayley graph on G if acts transitively on the edge set of Γ. In 1999, Praeger proved that every connected normal edge-transitive Cayley graph on a finite non-abelian simple group of valency 3 is normal. As an extension of this, in this paper, we prove that every connected normal edge-transitive Cayley graph on a finite non-abelian simple group of valency p is normal for each prime p. This, however, is not true for composite valency. We give a method to construct connected normal edge-transitive but non-normal Cayley graphs of certain groups, and using this, we prove that if G is either for an odd prime , or for , then there exists a connected normal edge-transitive but non-normal 8-valent Cayley graph of G.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.