{"title":"Tensile and shear performance of detachable tapered-head bolt inter-module connection of steel modular structure","authors":"Anling Zhang , Jiadi Liu , Zhihua Chen","doi":"10.1016/j.tws.2025.113228","DOIUrl":null,"url":null,"abstract":"<div><div>The connections between modular units significantly impact the construction speed and load-bearing capacity of modular steel structures. However, most existing inter-module connections struggle to meet the installation requirements at central connections, often necessitating openings in the module columns, walls, or floor slabs to provide installation space. This leads to internal redecoration after the connections have been installed, reducing construction efficiency and increasing costs. The detachable tapered-head bolt connection is a new type of connection that enables rapid installation and removal of central connection in modular buildings. In this paper, the tensile and shear performance of the connection under static loading is investigated, and the failure mode, bearing capacity and load-displacement response of the connection are investigated. The results indicate that the tensile failure mode of the connection includes the pull-out of the tapered-head bolt or the fracture of weld seam of the upper corner base plate. The shear failure mode is characterized by the shearing of the bolt and bearing-yield failure in the upper corner base plate. It is obtained that the thickness of the upper corner base plate and side plate as well as the diameter of the tapered-head bolt are the key design parameters of the connection. It is recommended that the thickness of the side plate should not be greater than that of the baseplate, otherwise the material strength of the side plate will not be fully utilized and the economy of the connection design will be reduced. Furthermore, the simplified analytical model of tensile resistance of the connection is established, and the calculation formula for the tensile capacity of the connection is developed. Additionally, the study confirms that the shear capacity of the connection can be calculated using the method outlined in GB50017–2017. These research results provide a reliable design basis and reference for the engineering application of detachable tapered-head bolt inter-module connection.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"213 ","pages":"Article 113228"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125003222","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The connections between modular units significantly impact the construction speed and load-bearing capacity of modular steel structures. However, most existing inter-module connections struggle to meet the installation requirements at central connections, often necessitating openings in the module columns, walls, or floor slabs to provide installation space. This leads to internal redecoration after the connections have been installed, reducing construction efficiency and increasing costs. The detachable tapered-head bolt connection is a new type of connection that enables rapid installation and removal of central connection in modular buildings. In this paper, the tensile and shear performance of the connection under static loading is investigated, and the failure mode, bearing capacity and load-displacement response of the connection are investigated. The results indicate that the tensile failure mode of the connection includes the pull-out of the tapered-head bolt or the fracture of weld seam of the upper corner base plate. The shear failure mode is characterized by the shearing of the bolt and bearing-yield failure in the upper corner base plate. It is obtained that the thickness of the upper corner base plate and side plate as well as the diameter of the tapered-head bolt are the key design parameters of the connection. It is recommended that the thickness of the side plate should not be greater than that of the baseplate, otherwise the material strength of the side plate will not be fully utilized and the economy of the connection design will be reduced. Furthermore, the simplified analytical model of tensile resistance of the connection is established, and the calculation formula for the tensile capacity of the connection is developed. Additionally, the study confirms that the shear capacity of the connection can be calculated using the method outlined in GB50017–2017. These research results provide a reliable design basis and reference for the engineering application of detachable tapered-head bolt inter-module connection.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.