Yanling Yu , Xiaodong Su , Tong Xing , Xuelin Zhao , Zhou Zhang , Wanqing Zhang , Xinping Wang , Weining Zhao , Mei Li , Fangyuan Zhao
{"title":"Enhanced photocurrent generation of a bio-photocathode based on photosystem I integrated in solvated redox polymers films nanostructured by SWCNTs","authors":"Yanling Yu , Xiaodong Su , Tong Xing , Xuelin Zhao , Zhou Zhang , Wanqing Zhang , Xinping Wang , Weining Zhao , Mei Li , Fangyuan Zhao","doi":"10.1016/j.bioelechem.2025.108979","DOIUrl":null,"url":null,"abstract":"<div><div>The most energetic light-induced charge-separation step in nature is driven by photosystem I (PSI), making this photosynthetic protein an attractive candidate for the development of semi-artificial energy conversion devices. Despite significant progress in semiconductor-free bio-photocathodes, the highest photocurrent density was only 322 ± 19 μA cm<sup>−2</sup>, achieved by integrating PSI within a pH-dependent poly(vinyl)imidazole Os(bispyridine)<sub>2</sub>Cl redox polymer (T Kothe et al., <em>Chem. Eur. J.</em>, 2014, 20, 11029). This study presents a more efficient PSI-based bio-photocathode by incorporating single-walled carbon nanotubes (SWCNTs) into the redox hydrogel composed of the same Osmium-containing redox polymer. The nanostructured redox hydrogel film with SWCNTs serving as electric scaffolds significantly improves the stability, loading amount, and heterogeneous electron transfer rate, resulting in a substantial increase in photocurrent density exceeding 2 mA cm<sup>−2</sup>, the highest achieved in a semiconductor-free PSI based photocathode to date. Bioelectrodes constructed by pre-depositing SWCNTs on the electrode surface via covalent bonds outperform those formed by co-immobilizing SWCNTs with the redox hydrogel. The dependence of photocurrent on light intensity and the photocurrent spectrum action demonstrate that the photocurrent unequivocally arises from PSI charge separation. This research lays a promising foundation for the development of semi-artificial photoelectrochemical devices for light-to-energy conversion.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108979"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000829","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The most energetic light-induced charge-separation step in nature is driven by photosystem I (PSI), making this photosynthetic protein an attractive candidate for the development of semi-artificial energy conversion devices. Despite significant progress in semiconductor-free bio-photocathodes, the highest photocurrent density was only 322 ± 19 μA cm−2, achieved by integrating PSI within a pH-dependent poly(vinyl)imidazole Os(bispyridine)2Cl redox polymer (T Kothe et al., Chem. Eur. J., 2014, 20, 11029). This study presents a more efficient PSI-based bio-photocathode by incorporating single-walled carbon nanotubes (SWCNTs) into the redox hydrogel composed of the same Osmium-containing redox polymer. The nanostructured redox hydrogel film with SWCNTs serving as electric scaffolds significantly improves the stability, loading amount, and heterogeneous electron transfer rate, resulting in a substantial increase in photocurrent density exceeding 2 mA cm−2, the highest achieved in a semiconductor-free PSI based photocathode to date. Bioelectrodes constructed by pre-depositing SWCNTs on the electrode surface via covalent bonds outperform those formed by co-immobilizing SWCNTs with the redox hydrogel. The dependence of photocurrent on light intensity and the photocurrent spectrum action demonstrate that the photocurrent unequivocally arises from PSI charge separation. This research lays a promising foundation for the development of semi-artificial photoelectrochemical devices for light-to-energy conversion.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.