Michael A. Pence , Gavin Hazen , Joaquín Rodríguez-López
{"title":"The emergence of automation in electrochemistry","authors":"Michael A. Pence , Gavin Hazen , Joaquín Rodríguez-López","doi":"10.1016/j.coelec.2025.101679","DOIUrl":null,"url":null,"abstract":"<div><div>Automated electrochemistry is emerging as a powerful tool to accelerate discoveries in important fields such as energy storage, catalysis, electrosynthesis, and electrochemical sensing, among others. Automated electrochemistry platforms (AEPs) offer the ability to increase the throughput of electrochemical experiments, reduce the workload of manual experimenters, and offer opportunities for enhanced reproducibility and transferability of experimental protocols. This review explores the design, capabilities, and applications of AEPs, highlighting platforms constructed with various fluid handling, motion control, and signal multiplexing capabilities for a variety of applications. Further, we highlight platforms that integrate automated synthesis and electrochemical characterization and we discuss the role of Bayesian optimization in autonomous experiments, enabling both performance optimization and mechanistic insight. Finally, we offer an outlook on the potential future directions of automated electrochemistry.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101679"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000389","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Automated electrochemistry is emerging as a powerful tool to accelerate discoveries in important fields such as energy storage, catalysis, electrosynthesis, and electrochemical sensing, among others. Automated electrochemistry platforms (AEPs) offer the ability to increase the throughput of electrochemical experiments, reduce the workload of manual experimenters, and offer opportunities for enhanced reproducibility and transferability of experimental protocols. This review explores the design, capabilities, and applications of AEPs, highlighting platforms constructed with various fluid handling, motion control, and signal multiplexing capabilities for a variety of applications. Further, we highlight platforms that integrate automated synthesis and electrochemical characterization and we discuss the role of Bayesian optimization in autonomous experiments, enabling both performance optimization and mechanistic insight. Finally, we offer an outlook on the potential future directions of automated electrochemistry.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •