{"title":"Perspective in the industrial applications of sonoelectrochemical hydrogen production","authors":"Md Hujjatul Islam , Bruno G Pollet","doi":"10.1016/j.coche.2025.101122","DOIUrl":null,"url":null,"abstract":"<div><div><em>Sonoelectrochemistry</em> is the incorporation of power ultrasound in electrochemistry. The use of ultrasound in electrochemical processes such as water electrolysis can lead to an energy efficiency enhancement in the range of 2–25% in low-temperature water electrolysers (LT-WE). However, this improvement greatly depends upon several factors such as the cell reactor design, the ultrasonic frequency, the transmitted acoustic power, and the distance between the ultrasonic transducer and the electrode. The main objectives of this review are to highlight recent advancements in using power ultrasound in water electrolysis and shed some light on possible commercial development by addressing the fundamental obstacles that lie in this technology. Several research works have highlighted that the efficiency improvement in ultrasound-aided water electrolysis is principally due to the gas bubble removal from the electrode surface, which ultimately reduces the ohmic resistance of the electrolytic cell. However, even with the observed higher efficiencies from the <em>sonoelectrolysers</em> for hydrogen production in R&D labs, this technology still faces challenges for further development due to the efficiency in competing with commercial LT-WEs, which are already in the range of 60–70%. If <em>sonoelectrolysers</em> are to succeed for commercial development and large-scale industrial applications, they would need to achieve overall efficiency much higher than current commercial LT-WEs.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101122"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000334","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sonoelectrochemistry is the incorporation of power ultrasound in electrochemistry. The use of ultrasound in electrochemical processes such as water electrolysis can lead to an energy efficiency enhancement in the range of 2–25% in low-temperature water electrolysers (LT-WE). However, this improvement greatly depends upon several factors such as the cell reactor design, the ultrasonic frequency, the transmitted acoustic power, and the distance between the ultrasonic transducer and the electrode. The main objectives of this review are to highlight recent advancements in using power ultrasound in water electrolysis and shed some light on possible commercial development by addressing the fundamental obstacles that lie in this technology. Several research works have highlighted that the efficiency improvement in ultrasound-aided water electrolysis is principally due to the gas bubble removal from the electrode surface, which ultimately reduces the ohmic resistance of the electrolytic cell. However, even with the observed higher efficiencies from the sonoelectrolysers for hydrogen production in R&D labs, this technology still faces challenges for further development due to the efficiency in competing with commercial LT-WEs, which are already in the range of 60–70%. If sonoelectrolysers are to succeed for commercial development and large-scale industrial applications, they would need to achieve overall efficiency much higher than current commercial LT-WEs.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.