A splitter theorem on 3-connected binary matroids and inner fans

IF 1.2 1区 数学 Q1 MATHEMATICS
João Paulo Costalonga
{"title":"A splitter theorem on 3-connected binary matroids and inner fans","authors":"João Paulo Costalonga","doi":"10.1016/j.jctb.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>We establish a splitter type theorem for 3-connected binary matroids regarding elements whose contraction preserves a fixed 3-connected minor and the vertical 3-connectivity. We established that, for 3-connected simple binary matroids <span><math><mi>N</mi><mo>&lt;</mo><mi>M</mi></math></span>, there is a disjoint family <span><math><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo><mo>⊆</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>E</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></msup></math></span> such that <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>r</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>r</mi><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><mo>⋯</mo><mo>∪</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≥</mo><mi>r</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>−</mo><mi>r</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span>, each <span><math><mrow><mi>si</mi></mrow><mo>(</mo><mi>M</mi><mo>/</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> is 3-connected with an <em>N</em>-minor, and either <span><math><mo>|</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>=</mo><mn>1</mn></math></span> or <em>X</em> is a special type of fan. We also establish a stronger version of this result under specific hypotheses. These results have several consequences, including the generalizations for binary matroids of some results about contractible edges in 3-connected graphs and some other structural results for graphs and binary matroids.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 204-245"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000218","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a splitter type theorem for 3-connected binary matroids regarding elements whose contraction preserves a fixed 3-connected minor and the vertical 3-connectivity. We established that, for 3-connected simple binary matroids N<M, there is a disjoint family {X1,,Xn}2E(M) such that r(X1)++r(Xn)=r(X1Xn)r(M)r(N), each si(M/Xi) is 3-connected with an N-minor, and either |Xi|=1 or X is a special type of fan. We also establish a stronger version of this result under specific hypotheses. These results have several consequences, including the generalizations for binary matroids of some results about contractible edges in 3-connected graphs and some other structural results for graphs and binary matroids.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信