Hierarchical power output prediction for floating photovoltaic systems

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Mohd Herwan Sulaiman , Zuriani Mustaffa , Mohd Shawal Jadin , Mohd Mawardi Saari
{"title":"Hierarchical power output prediction for floating photovoltaic systems","authors":"Mohd Herwan Sulaiman ,&nbsp;Zuriani Mustaffa ,&nbsp;Mohd Shawal Jadin ,&nbsp;Mohd Mawardi Saari","doi":"10.1016/j.energy.2025.135883","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate forecasting of power output in Floating Photovoltaic (FPV) systems is essential for optimizing renewable energy generation and improving energy management strategies. This study introduces a novel hierarchical prediction framework that enhances FPV power forecasting by systematically modeling energy output at three levels: (1) Maximum Power Point Tracking (MPPT) level, (2) phase-wise level, and (3) total system level. This structured approach captures the interdependencies between different operational levels, improving both prediction accuracy and interpretability. A high-resolution dataset, spanning one year with 5-min interval measurements, was collected from an operational FPV system at Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) and used for model training and validation. The dataset comprises meteorological parameters (solar irradiation, ambient temperature) and electrical characteristics (MPPT voltage, current, and phase-wise power output). Five machine learning models—Feedforward Neural Network (FFNN), Random Forest (RF), Extreme Learning Machine (ELM), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost)—were evaluated within the hierarchical framework. Results indicate that FFNN outperforms all other models, achieving an RMSE of 0.0125, MAE of 0.0024, and an R<sup>2</sup> of 1 at the system level. The hierarchical structure improves predictive robustness, reduces error propagation across levels, and enhances real-time monitoring by facilitating localized performance analysis. This framework offers a scalable and adaptable solution for FPV forecasting, contributing to enhanced grid stability and more effective energy management. The findings demonstrate the practical benefits of hierarchical modeling in renewable energy prediction, providing a foundation for future research into adaptive forecasting models for dynamic environmental conditions.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"323 ","pages":"Article 135883"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225015257","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate forecasting of power output in Floating Photovoltaic (FPV) systems is essential for optimizing renewable energy generation and improving energy management strategies. This study introduces a novel hierarchical prediction framework that enhances FPV power forecasting by systematically modeling energy output at three levels: (1) Maximum Power Point Tracking (MPPT) level, (2) phase-wise level, and (3) total system level. This structured approach captures the interdependencies between different operational levels, improving both prediction accuracy and interpretability. A high-resolution dataset, spanning one year with 5-min interval measurements, was collected from an operational FPV system at Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA) and used for model training and validation. The dataset comprises meteorological parameters (solar irradiation, ambient temperature) and electrical characteristics (MPPT voltage, current, and phase-wise power output). Five machine learning models—Feedforward Neural Network (FFNN), Random Forest (RF), Extreme Learning Machine (ELM), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost)—were evaluated within the hierarchical framework. Results indicate that FFNN outperforms all other models, achieving an RMSE of 0.0125, MAE of 0.0024, and an R2 of 1 at the system level. The hierarchical structure improves predictive robustness, reduces error propagation across levels, and enhances real-time monitoring by facilitating localized performance analysis. This framework offers a scalable and adaptable solution for FPV forecasting, contributing to enhanced grid stability and more effective energy management. The findings demonstrate the practical benefits of hierarchical modeling in renewable energy prediction, providing a foundation for future research into adaptive forecasting models for dynamic environmental conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信