{"title":"Multi-axed phase-transforming cellular material: A data-driven design and validation using finite-element method and machine learning","authors":"Masayuki Okugawa , Sosuke Kanegae , Yuichiro Koizumi","doi":"10.1016/j.eml.2025.102319","DOIUrl":null,"url":null,"abstract":"<div><div>We developed the novel Atom-Mimetic Cube-Diagonally Multi-Axed Phase-Transforming Cellular Material (AMCDMA-PXCM), hereafter AM-PXCM for short, for a multi-axial bistable metamaterial designed with inspiration from a face-centered cubic (FCC) crystal structure: the designed AM-PXCM consists of spheres at atomic positions of structure and dogleg-shaped beams connecting nearest neighbor spheres. Stress-strain relationship of AM-PXCM was investigated by Finite Element Method (FEM) simulation. Analyzing the results by Logistic classification revealed that the mechanical properties significantly depend on the designing parameters and the distance between the beam and the tetrahedron (<em>k</em>) dominantly determines the bistability of the FCC-based AM-PXCM. In addition, combined with the machine learning method (i.e., inverse design), we succeeded to predict the designing parameters to have the desired mechanical properties for a bistable metamaterial. The designed AM-PXCMs were realized using a 3D printer and validified to show the predicted mechanical properties. This established method for developing AM-PXCM is suggested to be also applied to a development of an AM-PXCM with the symmetry of other crystal structures.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"77 ","pages":"Article 102319"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000318","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed the novel Atom-Mimetic Cube-Diagonally Multi-Axed Phase-Transforming Cellular Material (AMCDMA-PXCM), hereafter AM-PXCM for short, for a multi-axial bistable metamaterial designed with inspiration from a face-centered cubic (FCC) crystal structure: the designed AM-PXCM consists of spheres at atomic positions of structure and dogleg-shaped beams connecting nearest neighbor spheres. Stress-strain relationship of AM-PXCM was investigated by Finite Element Method (FEM) simulation. Analyzing the results by Logistic classification revealed that the mechanical properties significantly depend on the designing parameters and the distance between the beam and the tetrahedron (k) dominantly determines the bistability of the FCC-based AM-PXCM. In addition, combined with the machine learning method (i.e., inverse design), we succeeded to predict the designing parameters to have the desired mechanical properties for a bistable metamaterial. The designed AM-PXCMs were realized using a 3D printer and validified to show the predicted mechanical properties. This established method for developing AM-PXCM is suggested to be also applied to a development of an AM-PXCM with the symmetry of other crystal structures.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.