A novel fault location method for multi-terminal transmission lines based on composite analysis of time-frequency fault traveling waves

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jupeng Zeng , Xiangjun Zeng , Hao Bai , Kun Yu , Min Xu , Xiaolong She , Feng Liu
{"title":"A novel fault location method for multi-terminal transmission lines based on composite analysis of time-frequency fault traveling waves","authors":"Jupeng Zeng ,&nbsp;Xiangjun Zeng ,&nbsp;Hao Bai ,&nbsp;Kun Yu ,&nbsp;Min Xu ,&nbsp;Xiaolong She ,&nbsp;Feng Liu","doi":"10.1016/j.ijepes.2025.110600","DOIUrl":null,"url":null,"abstract":"<div><div>In order to solve the problems such as complex fault branch determination, large fault location error and low error tolerance of the existing multi-terminal transmission line (MTTL) fault location method, due to the influence of fault traveling wave (FTW) wave head (WH) time extraction accuracy and network topology structure, a novel fault location method for MTTLs based on composite analysis of time–frequency FTW is proposed. The FTW location mechanism for MTTLs is firstly revealed. According to the characteristic that the FTW natural frequency (NF) is inversely proportional to the transmission distance, the fault branch determination vector is defined, and the corresponding principle is proposed to determine the fault branch. On this basis, the multi-terminal FTW data with adaptive FTW velocity capability are surface-fitted by using the characteristic that the transmission time of FTW is directly proportional to the transmission distance, so as to achieve fault precise location. The PSCAD/EMTDC simulation and laboratory test results show that this method has a simple fault location process and high location accuracy under various fault conditions, effectively reduces the influence of harsh environment, FTW velocity inhomogeneous and WH time extraction error on the location results, and has high error tolerance.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110600"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525001516","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the problems such as complex fault branch determination, large fault location error and low error tolerance of the existing multi-terminal transmission line (MTTL) fault location method, due to the influence of fault traveling wave (FTW) wave head (WH) time extraction accuracy and network topology structure, a novel fault location method for MTTLs based on composite analysis of time–frequency FTW is proposed. The FTW location mechanism for MTTLs is firstly revealed. According to the characteristic that the FTW natural frequency (NF) is inversely proportional to the transmission distance, the fault branch determination vector is defined, and the corresponding principle is proposed to determine the fault branch. On this basis, the multi-terminal FTW data with adaptive FTW velocity capability are surface-fitted by using the characteristic that the transmission time of FTW is directly proportional to the transmission distance, so as to achieve fault precise location. The PSCAD/EMTDC simulation and laboratory test results show that this method has a simple fault location process and high location accuracy under various fault conditions, effectively reduces the influence of harsh environment, FTW velocity inhomogeneous and WH time extraction error on the location results, and has high error tolerance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信