Open-source short-circuit current solver for power systems with renewable energy sources and HVDC links

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jian Wang , Changgang Li , Junjun Yang , Hang Qi , Wen Hua , Wei Dong , Lin Ye , Vladimir Terzija
{"title":"Open-source short-circuit current solver for power systems with renewable energy sources and HVDC links","authors":"Jian Wang ,&nbsp;Changgang Li ,&nbsp;Junjun Yang ,&nbsp;Hang Qi ,&nbsp;Wen Hua ,&nbsp;Wei Dong ,&nbsp;Lin Ye ,&nbsp;Vladimir Terzija","doi":"10.1016/j.ijepes.2025.110651","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale integration of renewable energy sources (RES) and high voltage direct current (HVDC) links have changed the power system short-circuit current (SCC) level significantly. Traditional SCC solvers for systems dominated by synchronous generators are no longer applicable. This paper provides an open-source SCC solver based on Simulation Toolkit for Electrical Power Systems (STEPS). It supports SCC analysis for power systems with RES and HVDC and allows customized extensions for emerging RES and HVDC control models. In the solver, the sequence models are created for RES and HVDC to support the research on changes in SCC characteristics. To speed up the calculation of equivalent impedance for different fault locations, a new method without adding new bus at the fault location is proposed. The solver provides iterative SCC calculation and direct solving functionality with a range of additional features. Flexible options are provided and configurable to cope with different calculation scenarios. The accuracy of the SCC solver is compared with PSS/E. Meanwhile, numerical examples considering RES and HVDC links are provided to demonstrate the practicality of the solver.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"167 ","pages":"Article 110651"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525002029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale integration of renewable energy sources (RES) and high voltage direct current (HVDC) links have changed the power system short-circuit current (SCC) level significantly. Traditional SCC solvers for systems dominated by synchronous generators are no longer applicable. This paper provides an open-source SCC solver based on Simulation Toolkit for Electrical Power Systems (STEPS). It supports SCC analysis for power systems with RES and HVDC and allows customized extensions for emerging RES and HVDC control models. In the solver, the sequence models are created for RES and HVDC to support the research on changes in SCC characteristics. To speed up the calculation of equivalent impedance for different fault locations, a new method without adding new bus at the fault location is proposed. The solver provides iterative SCC calculation and direct solving functionality with a range of additional features. Flexible options are provided and configurable to cope with different calculation scenarios. The accuracy of the SCC solver is compared with PSS/E. Meanwhile, numerical examples considering RES and HVDC links are provided to demonstrate the practicality of the solver.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信