{"title":"Metabolic reprogramming of tumor microenviroment by engineered bacteria","authors":"Heng Wang, Fang Xu, Chao Wang","doi":"10.1016/j.semcancer.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming—where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion—has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 58-70"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X25000495","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming—where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion—has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.
期刊介绍:
Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field.
The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies.
To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area.
The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.