Limiting the mobility and phytoavailability of cadmium in paddy-upland soils after the application of various biochar fractions and proportions

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhuoyi Yan , Wenchuan Ding , Gengxin Xie , Ming Yan , Qianliu Wang
{"title":"Limiting the mobility and phytoavailability of cadmium in paddy-upland soils after the application of various biochar fractions and proportions","authors":"Zhuoyi Yan ,&nbsp;Wenchuan Ding ,&nbsp;Gengxin Xie ,&nbsp;Ming Yan ,&nbsp;Qianliu Wang","doi":"10.1016/j.ecoenv.2025.118124","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the pivotal role of biochar particle size and addition ratio in mitigating cadmium (Cd) contamination in paddy-upland soils, with a specific focus on curbing Cd uptake by Chinese cabbage (<em>Brassica chinensis</em> L.) during the pivotal transition from paddy to upland cultivation. Through a meticulously designed laboratory experiment, we uncovered that biochar's adsorption capacity for soil Cd is markedly lower than its maximum adsorptive capacity as determined by adsorption kinetics, potentially due to competitive adsorption by other cationic species present in the soil. This insight underscores the critical need to optimize biochar application rates in Cd-contaminated soils to effectively modulate Cd phytoavailability. Furthermore, our findings demonstrate that biochar not only effectively converts non-residual soil Cd fractions into a more stable \"residual Cd\" form but also diminishes the uptake of Cd by Chinese cabbage from the soil. Notably, the application of fine biochar (<em>Φ</em><sub>3</sub> &lt; 0.25 mm) at a 10 % application rate was particularly efficacious, reducing soil non-residual Cd concentration by 28.2 %, equivalent to approximately 1.79 mg/kg. This research introduces a novel perspective on biochar-mediated remediation of soil Cd contamination, emphasizing the critical influence of particle size and addition ratio on regulating Cd phytoavailability and enhancing food safety in agricultural soils under paddy-upland rotation cultivation affected by Cd contamination.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"295 ","pages":"Article 118124"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325004609","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the pivotal role of biochar particle size and addition ratio in mitigating cadmium (Cd) contamination in paddy-upland soils, with a specific focus on curbing Cd uptake by Chinese cabbage (Brassica chinensis L.) during the pivotal transition from paddy to upland cultivation. Through a meticulously designed laboratory experiment, we uncovered that biochar's adsorption capacity for soil Cd is markedly lower than its maximum adsorptive capacity as determined by adsorption kinetics, potentially due to competitive adsorption by other cationic species present in the soil. This insight underscores the critical need to optimize biochar application rates in Cd-contaminated soils to effectively modulate Cd phytoavailability. Furthermore, our findings demonstrate that biochar not only effectively converts non-residual soil Cd fractions into a more stable "residual Cd" form but also diminishes the uptake of Cd by Chinese cabbage from the soil. Notably, the application of fine biochar (Φ3 < 0.25 mm) at a 10 % application rate was particularly efficacious, reducing soil non-residual Cd concentration by 28.2 %, equivalent to approximately 1.79 mg/kg. This research introduces a novel perspective on biochar-mediated remediation of soil Cd contamination, emphasizing the critical influence of particle size and addition ratio on regulating Cd phytoavailability and enhancing food safety in agricultural soils under paddy-upland rotation cultivation affected by Cd contamination.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信