Hydrogen adsorption on Ga-doped bilayer graphene: A DFT study

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Yunhua Lu , Zhengqing Zhan , Chao Zhang , Qingwei Zhang , Junan Zhang , Feng Zhang , Yanping Chen
{"title":"Hydrogen adsorption on Ga-doped bilayer graphene: A DFT study","authors":"Yunhua Lu ,&nbsp;Zhengqing Zhan ,&nbsp;Chao Zhang ,&nbsp;Qingwei Zhang ,&nbsp;Junan Zhang ,&nbsp;Feng Zhang ,&nbsp;Yanping Chen","doi":"10.1016/j.partic.2025.03.009","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen, as an environmentally friendly energy source, is pivotal in its storage methods for its development and effective utilization. Graphene boasts advantages such as high specific surface area, excellent electrical properties, and high tunability, making it highly promising for hydrogen storage applications. Compared to monolayer graphene, bilayer graphene exhibits a more easily controllable bandgap, showcasing its potential for hydrogen storage. Additionally, to further enhance the hydrogen adsorption capability of graphene-based substrates, doping methods are commonly employed to adjust their electrical properties. This study proposes a model for hydrogen adsorption on bilayer graphene to investigate its hydrogen storage capacity. Specifically, density functional theory (DFT) computational methods are utilized to study the adsorption of single and multiple hydrogen molecules on monolayer and bilayer graphene, with or without doping with gallium atoms. Furthermore, the underlying reasons for the enhanced hydrogen adsorption in gallium-doped bilayer graphene are systematically analyzed and elucidated. The research findings indicate that pristine graphene exhibits relatively low sensitivity to hydrogen gas, with adsorption energies of only −0.078 and −0.096 eV for monolayer graphene (MG) and bilayer graphene (BG), respectively. However, upon doping gallium atoms into MG and BG, the adsorption energy significantly increases by approximately 30.8 % and 54.1 %. For adsorbing 8 H<sub>2</sub>, with average adsorption energies reaching -0.102 eV and −0.163 eV, which is primarily due to the electron in the s orbital of H has been transferred to the d orbital of transition metal Ga. These results indicate that gallium-doped bilayer graphene holds great promise as a hydrogen storage material.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"100 ","pages":"Pages 103-115"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125000835","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen, as an environmentally friendly energy source, is pivotal in its storage methods for its development and effective utilization. Graphene boasts advantages such as high specific surface area, excellent electrical properties, and high tunability, making it highly promising for hydrogen storage applications. Compared to monolayer graphene, bilayer graphene exhibits a more easily controllable bandgap, showcasing its potential for hydrogen storage. Additionally, to further enhance the hydrogen adsorption capability of graphene-based substrates, doping methods are commonly employed to adjust their electrical properties. This study proposes a model for hydrogen adsorption on bilayer graphene to investigate its hydrogen storage capacity. Specifically, density functional theory (DFT) computational methods are utilized to study the adsorption of single and multiple hydrogen molecules on monolayer and bilayer graphene, with or without doping with gallium atoms. Furthermore, the underlying reasons for the enhanced hydrogen adsorption in gallium-doped bilayer graphene are systematically analyzed and elucidated. The research findings indicate that pristine graphene exhibits relatively low sensitivity to hydrogen gas, with adsorption energies of only −0.078 and −0.096 eV for monolayer graphene (MG) and bilayer graphene (BG), respectively. However, upon doping gallium atoms into MG and BG, the adsorption energy significantly increases by approximately 30.8 % and 54.1 %. For adsorbing 8 H2, with average adsorption energies reaching -0.102 eV and −0.163 eV, which is primarily due to the electron in the s orbital of H has been transferred to the d orbital of transition metal Ga. These results indicate that gallium-doped bilayer graphene holds great promise as a hydrogen storage material.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信