Study of microchannel heat transfer characteristics based on topology optimization

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yuwei Liu , Changhui Chen , Yanpeng Yuan , Jiasong Yang , Zhiqiang Guo , Jiawei Shi
{"title":"Study of microchannel heat transfer characteristics based on topology optimization","authors":"Yuwei Liu ,&nbsp;Changhui Chen ,&nbsp;Yanpeng Yuan ,&nbsp;Jiasong Yang ,&nbsp;Zhiqiang Guo ,&nbsp;Jiawei Shi","doi":"10.1016/j.ijthermalsci.2025.109898","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the dual-objective topology optimization method, four microchannel configurations with differing inlet and outlet arrangements are studied in this paper. The influences of the aspect ratio, weight coefficient and Reynolds number on the optimized design variable, temperature and pressure fields have been investigated. Comparative analysis of heat transfer characteristics in microchannels with different structures is implemented using the entransy dissipation theory and the field synergy principle. The results show that the maximum temperature demonstrates higher sensitivity to aspect ratio and weighting factor variations in DMC and 3SMC configurations compared to Reynolds number effects. Pressure drop characteristics exhibit that the weighting factor has the most significant impact on 2SMC, while aspect ratio determines 3SMC behavior. In addition, DMC achieves the highest entransy dissipation and the best heat transfer efficiency, while CMC presents the best synergy between velocity and temperature fields, superior flow characteristics and optimal thermal performance.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109898"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925002212","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the dual-objective topology optimization method, four microchannel configurations with differing inlet and outlet arrangements are studied in this paper. The influences of the aspect ratio, weight coefficient and Reynolds number on the optimized design variable, temperature and pressure fields have been investigated. Comparative analysis of heat transfer characteristics in microchannels with different structures is implemented using the entransy dissipation theory and the field synergy principle. The results show that the maximum temperature demonstrates higher sensitivity to aspect ratio and weighting factor variations in DMC and 3SMC configurations compared to Reynolds number effects. Pressure drop characteristics exhibit that the weighting factor has the most significant impact on 2SMC, while aspect ratio determines 3SMC behavior. In addition, DMC achieves the highest entransy dissipation and the best heat transfer efficiency, while CMC presents the best synergy between velocity and temperature fields, superior flow characteristics and optimal thermal performance.
本文基于双目标拓扑优化方法,研究了四种入口和出口布置不同的微通道配置。研究了高宽比、重量系数和雷诺数对优化设计变量、温度场和压力场的影响。利用入口耗散理论和场协同原理,对不同结构微通道的传热特性进行了比较分析。结果表明,与雷诺数效应相比,在 DMC 和 3SMC 配置中,最高温度对长宽比和加权系数变化的敏感性更高。压降特性表明,加权系数对 2SMC 的影响最大,而长宽比则决定了 3SMC 的行为。此外,DMC 实现了最高的入口散热和最佳的传热效率,而 CMC 则实现了速度场和温度场之间的最佳协同效应、卓越的流动特性和最佳的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信