Investigation of competitive sorption and plasticization of hyperaged CANAL ladder polymers for acid gas purification

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Jing Ying Yeo , Francesco M. Benedetti , Benjamin J. Pedretti , Ashley M. Robinson , Ruilin Yin , Holden W.H. Lai , Tae Hoon Lee , Yan Xia , Zachary P. Smith
{"title":"Investigation of competitive sorption and plasticization of hyperaged CANAL ladder polymers for acid gas purification","authors":"Jing Ying Yeo ,&nbsp;Francesco M. Benedetti ,&nbsp;Benjamin J. Pedretti ,&nbsp;Ashley M. Robinson ,&nbsp;Ruilin Yin ,&nbsp;Holden W.H. Lai ,&nbsp;Tae Hoon Lee ,&nbsp;Yan Xia ,&nbsp;Zachary P. Smith","doi":"10.1016/j.memsci.2025.123973","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying membrane materials that have exceptional separation performance and stability to complex CO<sub>2</sub>-containing mixtures is a pressing topic in separation science. In this work, the membrane separation performance for a recently discovered class of contorted polymers synthesized via catalytic arene-norbornene annulation (CANAL) polymerization is presented. These CANAL polymers achieve high CO<sub>2</sub>/CH<sub>4</sub> selectivity of 68 after physical aging (up to ∼1 year), which significantly augments the size-sieving capabilities of the membranes. Binary CO<sub>2</sub>/CH<sub>4</sub> and ternary H<sub>2</sub>S/CO<sub>2</sub>/CH<sub>4</sub> testing result in a 41 % and 50 % enhancement in selectivities, respectively, for hyperaged (∼1 year) contorted CANAL polymers, highlighting their size-sieving capabilities. The remarkably high CO<sub>2</sub>/CH<sub>4</sub> mixed-gas and combined acid gas (CAG, (CO<sub>2</sub>+H<sub>2</sub>S)/CH<sub>4</sub>) selectivities of 88 and 95, respectively, for CANAL-Me-S<sub>5</sub>F in particular surpass both the 2018 CO<sub>2</sub>/CH<sub>4</sub> mixed-gas and CAG upper bounds. Performance stability was also investigated for high concentrations of CO<sub>2</sub>, revealing a reduction in CO<sub>2</sub>/CH<sub>4</sub> mixed-gas selectivity without compromising CO<sub>2</sub> permeability, suggesting strong sorption of CO<sub>2</sub> but minimal plasticization effects for short testing periods. Conversely, time-dependent plasticization shows negligible effects on CO<sub>2</sub>/CH<sub>4</sub> mixed-gas selectivity despite an increase in CO<sub>2</sub> permeability when exposed to high concentrations of plasticizing CO<sub>2</sub> over an extended period of 170 h. This study provides valuable insights into hyperaged CANAL polymers and their performance in practical industrial processes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"726 ","pages":"Article 123973"},"PeriodicalIF":8.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825002868","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying membrane materials that have exceptional separation performance and stability to complex CO2-containing mixtures is a pressing topic in separation science. In this work, the membrane separation performance for a recently discovered class of contorted polymers synthesized via catalytic arene-norbornene annulation (CANAL) polymerization is presented. These CANAL polymers achieve high CO2/CH4 selectivity of 68 after physical aging (up to ∼1 year), which significantly augments the size-sieving capabilities of the membranes. Binary CO2/CH4 and ternary H2S/CO2/CH4 testing result in a 41 % and 50 % enhancement in selectivities, respectively, for hyperaged (∼1 year) contorted CANAL polymers, highlighting their size-sieving capabilities. The remarkably high CO2/CH4 mixed-gas and combined acid gas (CAG, (CO2+H2S)/CH4) selectivities of 88 and 95, respectively, for CANAL-Me-S5F in particular surpass both the 2018 CO2/CH4 mixed-gas and CAG upper bounds. Performance stability was also investigated for high concentrations of CO2, revealing a reduction in CO2/CH4 mixed-gas selectivity without compromising CO2 permeability, suggesting strong sorption of CO2 but minimal plasticization effects for short testing periods. Conversely, time-dependent plasticization shows negligible effects on CO2/CH4 mixed-gas selectivity despite an increase in CO2 permeability when exposed to high concentrations of plasticizing CO2 over an extended period of 170 h. This study provides valuable insights into hyperaged CANAL polymers and their performance in practical industrial processes.

Abstract Image

确定对复杂的含二氧化碳混合物具有优异分离性能和稳定性的膜材料是分离科学中的一个紧迫课题。在这项工作中,介绍了最近发现的一类通过催化炔-降冰片烯环化(CANAL)聚合合成的变形聚合物的膜分离性能。这些 CANAL 聚合物在物理老化(长达 ∼ 1 年)后的 CO2/CH4 选择性高达 68,这大大增强了膜的尺寸筛分能力。二元 CO2/CH4 和三元 H2S/CO2/CH4 测试结果表明,超老化(1 年以下)变形 CANAL 聚合物的选择性分别提高了 41% 和 50%,这突出表明了它们的尺寸筛分能力。特别是 CANAL-Me-S5F 的 CO2/CH4 混合气体和组合酸性气体(CAG,(CO2+H2S)/CH4)选择性显著提高,分别达到 88% 和 95%,超过了 2018 年 CO2/CH4 混合气体和 CAG 的上限。此外,还对高浓度二氧化碳的性能稳定性进行了研究,结果表明二氧化碳/CH4 混合气体选择性降低,但二氧化碳渗透性并未受到影响,这表明二氧化碳吸附性很强,但短时间测试的塑化效应很小。相反,随时间变化的塑化对 CO2/CH4 混合气体选择性的影响可以忽略不计,尽管当暴露在高浓度的塑化 CO2 中 170 小时后,CO2 渗透性会增加。这项研究为了解超定型 CANAL 聚合物及其在实际工业过程中的性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信