{"title":"Optimized expression of human interleukin-15 in Nicotiana benthamiana and in vitro assessment of its activity on human keratinocytes","authors":"Chalatorn Charnsatabut , Pipob Suwanchaikasem , Kaewta Rattanapisit , Iksen Iksen , Varisa Pongrakhananon , Christine Joy I. Bulaon , Waranyoo Phoolcharoen","doi":"10.1016/j.btre.2025.e00889","DOIUrl":null,"url":null,"abstract":"<div><div>Human interleukin-15 (hIL-15) is a cytokine essential for immune modulation with therapeutic applications in cancer and chronic wound healing. Although hIL-15 is commercially available, large-scale production studies remain limited. With promising clinical trial results, demand for hIL-15 is expected to rise. Plant expression systems offer a sustainable, low-cost alternative for rapid biopharmaceutical production. In this study, we optimized hIL-15 expression in <em>Nicotiana benthamiana</em> and assessed its physicochemical properties and biological activity. We fused hIL-15 to the Fc domain of human IgG1 for efficient purification. Through optimization of the pre- and post-infiltration conditions, we achieved transient expression and recovery at 4 dpi, yielding 33.8 µg/g fresh weight. Peptide mapping confirmed 97 % overall sequence coverage of the primary structure. Treatment with plant-produced hIL-15-Fc effectively promoted human keratinocyte HaCaT cell proliferation and migration <em>in vitro</em>. These findings demonstrated the potential of plant-based platforms for producing therapeutic recombinant hIL-15 that support wound healing.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"46 ","pages":"Article e00889"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Human interleukin-15 (hIL-15) is a cytokine essential for immune modulation with therapeutic applications in cancer and chronic wound healing. Although hIL-15 is commercially available, large-scale production studies remain limited. With promising clinical trial results, demand for hIL-15 is expected to rise. Plant expression systems offer a sustainable, low-cost alternative for rapid biopharmaceutical production. In this study, we optimized hIL-15 expression in Nicotiana benthamiana and assessed its physicochemical properties and biological activity. We fused hIL-15 to the Fc domain of human IgG1 for efficient purification. Through optimization of the pre- and post-infiltration conditions, we achieved transient expression and recovery at 4 dpi, yielding 33.8 µg/g fresh weight. Peptide mapping confirmed 97 % overall sequence coverage of the primary structure. Treatment with plant-produced hIL-15-Fc effectively promoted human keratinocyte HaCaT cell proliferation and migration in vitro. These findings demonstrated the potential of plant-based platforms for producing therapeutic recombinant hIL-15 that support wound healing.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.