{"title":"Weak degeneracy of the square of K4-minor free graphs","authors":"Jing Ye , Jiani Zou , Miaomiao Han","doi":"10.1016/j.amc.2025.129439","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <em>G</em> is called weakly <em>f</em>-degenerate with respect to a function <em>f</em> from <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to the non-negative integers, if every vertex of <em>G</em> can be successively removed through a series of valid Delete and DeleteSave operations. The weak degeneracy <span><math><mi>w</mi><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is defined as the smallest integer <em>d</em> for which <em>G</em> is weakly <em>d</em>-degenerate, where <em>d</em> is a constant function. It was demonstrated that one plus the weak degeneracy can act as an upper bound for list-chromatic number and DP-chromatic number. Let <span><math><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn></math></span> if <span><math><mn>2</mn><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>3</mn></math></span>, and <span><math><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span> if <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>4</mn></math></span>. In this paper, we prove that for every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-minor free graph <em>G</em>, <span><math><mi>w</mi><mi>d</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>≤</mo><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which implies that <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is <span><math><mo>(</mo><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-choosable and <span><math><mo>(</mo><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-DP-colorable. This work generalizes the result obtained by Lih et al. in [Discrete Mathematics, 269 (2003), 303-309] and Hetherington et al. in [Discrete Mathematics, 308 (2008), 4037-4043].</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129439"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001663","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A graph G is called weakly f-degenerate with respect to a function f from to the non-negative integers, if every vertex of G can be successively removed through a series of valid Delete and DeleteSave operations. The weak degeneracy is defined as the smallest integer d for which G is weakly d-degenerate, where d is a constant function. It was demonstrated that one plus the weak degeneracy can act as an upper bound for list-chromatic number and DP-chromatic number. Let if , and if . In this paper, we prove that for every -minor free graph G, , which implies that is -choosable and -DP-colorable. This work generalizes the result obtained by Lih et al. in [Discrete Mathematics, 269 (2003), 303-309] and Hetherington et al. in [Discrete Mathematics, 308 (2008), 4037-4043].
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.