Weak degeneracy of the square of K4-minor free graphs

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jing Ye , Jiani Zou , Miaomiao Han
{"title":"Weak degeneracy of the square of K4-minor free graphs","authors":"Jing Ye ,&nbsp;Jiani Zou ,&nbsp;Miaomiao Han","doi":"10.1016/j.amc.2025.129439","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <em>G</em> is called weakly <em>f</em>-degenerate with respect to a function <em>f</em> from <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to the non-negative integers, if every vertex of <em>G</em> can be successively removed through a series of valid Delete and DeleteSave operations. The weak degeneracy <span><math><mi>w</mi><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is defined as the smallest integer <em>d</em> for which <em>G</em> is weakly <em>d</em>-degenerate, where <em>d</em> is a constant function. It was demonstrated that one plus the weak degeneracy can act as an upper bound for list-chromatic number and DP-chromatic number. Let <span><math><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>2</mn></math></span> if <span><math><mn>2</mn><mo>≤</mo><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>3</mn></math></span>, and <span><math><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>=</mo><mo>⌊</mo><mfrac><mrow><mn>3</mn><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span> if <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>4</mn></math></span>. In this paper, we prove that for every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-minor free graph <em>G</em>, <span><math><mi>w</mi><mi>d</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>≤</mo><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, which implies that <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is <span><math><mo>(</mo><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-choosable and <span><math><mo>(</mo><mi>κ</mi><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-DP-colorable. This work generalizes the result obtained by Lih et al. in [Discrete Mathematics, 269 (2003), 303-309] and Hetherington et al. in [Discrete Mathematics, 308 (2008), 4037-4043].</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129439"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001663","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A graph G is called weakly f-degenerate with respect to a function f from V(G) to the non-negative integers, if every vertex of G can be successively removed through a series of valid Delete and DeleteSave operations. The weak degeneracy wd(G) is defined as the smallest integer d for which G is weakly d-degenerate, where d is a constant function. It was demonstrated that one plus the weak degeneracy can act as an upper bound for list-chromatic number and DP-chromatic number. Let κ(G2)=Δ(G)+2 if 2Δ(G)3, and κ(G2)=3Δ(G)2 if Δ(G)4. In this paper, we prove that for every K4-minor free graph G, wd(G2)κ(G2), which implies that G2 is (κ(G2)+1)-choosable and (κ(G2)+1)-DP-colorable. This work generalizes the result obtained by Lih et al. in [Discrete Mathematics, 269 (2003), 303-309] and Hetherington et al. in [Discrete Mathematics, 308 (2008), 4037-4043].
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信