Interaction topology optimization by adjustment of edge weights to improve the consensus convergence and prolong the sampling period for a multi-agent system

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Tongyou Xu , Ying-Ying Tan , Shanshan Gao , Xuejuan Zhan
{"title":"Interaction topology optimization by adjustment of edge weights to improve the consensus convergence and prolong the sampling period for a multi-agent system","authors":"Tongyou Xu ,&nbsp;Ying-Ying Tan ,&nbsp;Shanshan Gao ,&nbsp;Xuejuan Zhan","doi":"10.1016/j.amc.2025.129428","DOIUrl":null,"url":null,"abstract":"<div><div>The second smallest eigenvalue and the largest eigenvalue of the Laplacian matrix of a simple undirected connected graph <em>G</em> are called the algebraic connectivity <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and the Laplacian spectral radius <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, respectively. For a first-order periodically sampled consensus protocol multi-agent system (MAS), whose interaction topology can be modeled as a graph <em>G</em>, a larger <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> results in a faster consensus convergence rate, while a smaller <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> contributes to a longer sampling period of the system. Adjusting the weights of the edges is an efficient approach to optimize the interaction topology of a MAS, which improves the consensus convergence rate and prolongs the sampling period. If <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> increases, then the weight of one edge <span><math><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></math></span> increases, i.e., the increment <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, and the entries of its eigenvector with respect to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are not equal. If <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> decreases, then the weight of one edge <span><math><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>}</mo></math></span> decreases, i.e., the increment <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span>, and the entries of its eigenvector with respect to <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are not equal. Moreover, when considering adjusting the weights of edges, some necessary conditions for increasing <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and decreasing <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are also given respectively, both of which are determined by the entries of their eigenvectors with respect to the vertices of edges and the increment of edge weights. A number of numerical exemplifications are presented to support the theoretical findings.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129428"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001559","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The second smallest eigenvalue and the largest eigenvalue of the Laplacian matrix of a simple undirected connected graph G are called the algebraic connectivity λ2(G) and the Laplacian spectral radius λn(G), respectively. For a first-order periodically sampled consensus protocol multi-agent system (MAS), whose interaction topology can be modeled as a graph G, a larger λ2(G) results in a faster consensus convergence rate, while a smaller λn(G) contributes to a longer sampling period of the system. Adjusting the weights of the edges is an efficient approach to optimize the interaction topology of a MAS, which improves the consensus convergence rate and prolongs the sampling period. If λ2(G) increases, then the weight of one edge {vs,vt} increases, i.e., the increment δst>0, and the entries of its eigenvector with respect to vs and vt are not equal. If λn(G) decreases, then the weight of one edge {vs,vt} decreases, i.e., the increment δst<0, and the entries of its eigenvector with respect to vs and vt are not equal. Moreover, when considering adjusting the weights of edges, some necessary conditions for increasing λ2(G) and decreasing λn(G) are also given respectively, both of which are determined by the entries of their eigenvectors with respect to the vertices of edges and the increment of edge weights. A number of numerical exemplifications are presented to support the theoretical findings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信