A fast implicit difference scheme with nonuniform discretized grids for the time-fractional Black–Scholes model

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Qi Xin , Xian-Ming Gu , Li-Bin Liu
{"title":"A fast implicit difference scheme with nonuniform discretized grids for the time-fractional Black–Scholes model","authors":"Qi Xin ,&nbsp;Xian-Ming Gu ,&nbsp;Li-Bin Liu","doi":"10.1016/j.amc.2025.129441","DOIUrl":null,"url":null,"abstract":"<div><div>The solution of the time-fractional Black–Scholes (TFBS) equation often exhibits a weak singularity at initial time and possible non-physical oscillations in the computed solution due to the degeneracy of the BS differential operator. To address this issue, we combine a modified graded mesh and a piecewise uniform mesh for temporal and spatial discretizations, respectively. Then we use the fast approximation (rather than the direct approximation) of the <em>L</em>1 scheme for the Caputo derivative to establish an implicit difference method for the TFBS model. Our analysis shows the stability and convergence of the proposed scheme, as well as the <em>α</em>-nonrobust error bounds. Finally, numerical results are presented to show the effectiveness of the proposed method.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129441"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001687","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The solution of the time-fractional Black–Scholes (TFBS) equation often exhibits a weak singularity at initial time and possible non-physical oscillations in the computed solution due to the degeneracy of the BS differential operator. To address this issue, we combine a modified graded mesh and a piecewise uniform mesh for temporal and spatial discretizations, respectively. Then we use the fast approximation (rather than the direct approximation) of the L1 scheme for the Caputo derivative to establish an implicit difference method for the TFBS model. Our analysis shows the stability and convergence of the proposed scheme, as well as the α-nonrobust error bounds. Finally, numerical results are presented to show the effectiveness of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信